Ionic transport characteristics of negatively and positively charged conical nanopores in 1:1, 2:1, 3:1, 2:2, 1:2, and 1:3 electrolytes
We study experimentally the current (I)-voltage (V) curves of 1:1, 2:1, 3:1, 2:2, 1:2, and 1:3 electrolytes in positively and negatively charged conically-shaped pores of nanoscale dimensions. The positive charges are poly(allylamine hydrochloride) chains functionalized on the pore surface by electrostatic interactions while the negative charges are carboxylic acid groups. Under physiological conditions, these fixed-charge groups are ionized and strongly interact with the different monovalent, divalent, and trivalent ions in the pore solution. The current rectification of the I-V curves and the membrane potentials provide fundamental information on the interaction of the pore charge groups …