0000000000762491

AUTHOR

W. Kells

showing 8 related works from this author

First Antiprotons in an Ion Trap

1987

Measurements of the antiproton mass[2,3,4,5] are represented in Fig. 1. All of these are deduced from measurements of the energy of x-rays radiated from highly excited exotic atoms. For example, if an antiproton is captured in a Pb atom, it can make radiative transitions from its n = 20 to n = 19 state. The antiproton is still well outside the nucleus in this case, so that nuclear effects can be neglected. The measured transition energy is essentially proportional to the reduced mass of the nucleus and hence the antiproton mass can be deduced by comparing the measured values with theoretical values, corrected for QED effects. The most accurate quoted uncertainty is 5 × 10-5 and is consisten…

Nuclear physicsPhysicsProtonAntiprotonExcited stateAtomPhysics::Accelerator PhysicsPhysics::Atomic PhysicsElectronReduced massNuclear ExperimentStorage ringExotic atom
researchProduct

Barkas effect with use of antiprotons and protons.

1989

The difference in the range of protons and antiprotons in matter, an example of the Barkas effect, is observed in a simple time-of-flight apparatus. The ranges of 5.9-MeV antiprotons and protons differ by about 6% in a degrader made predominantly of aluminum.

PhysicsRange (particle radiation)AntiparticleNuclear TheoryHadronBaryonNuclear physicsAntiprotonAntimatterPhysics::Accelerator PhysicsStopping power (particle radiation)High Energy Physics::ExperimentAtomic physicsNuclear ExperimentNucleonPhysical review. A, General physics
researchProduct

Thousandfold improvement in the measured antiproton mass

1990

Comparisons of antiproton and proton cyclotron frequencies yield the ratio of inertial masses M(p¯)/M(p)=0.999 999 977 ±0.000 000 042. The fractional uncertainty of 4×10−8 is 1000 times more accurate than previous measurements of this ratio using exotic atoms and is the most precise test of CPT invariance with baryons. Independent comparisons to electrons yield the mass ratios M(p¯)/M(e−)=1836.152 660±0.000 083 and M(p)/M(e−) =1836.152 680±0.000 088. Cryogenic antiprotons (near 4 K) stored in a Penning trap for 2 months establish directly a lifetime greater than 3.4 months.

PhysicsNuclear physicsBaryonProtonCPT symmetryAntiprotonlawCyclotronGeneral Physics and AstronomyElectronPenning trapExotic atomlaw.inventionPhysical Review Letters
researchProduct

Cooling and slowing of trapped antiprotons below 100 meV

1989

Electron cooling of trapped antiprotons allows their storage at energies 10 million times lower than is available in any antiproton storage ring. More than 60 000 antiprotons with energies from 0 to 3000 eV are stored in an ion trap from a single pulse of 5.9-MeV antiprotons from LEAR. Trapped antiprotons maintain their initial energy distribution over a storage lifetime exceeding 50 h unless allowed to collide with a cold buffer gas of trapped electrons, where- upon they cool dramatically to 1 eV in tens of seconds. The cooled antiprotons can be stacked into a harmonic potential well suited for long-term storage and precision measurements.

Condensed Matter::Quantum GasesPhysicsAnnihilationEnergy distributionBuffer gasGeneral Physics and AstronomyElectronlaw.inventionNuclear physicsAntiprotonlawPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentPhysics::Atomic PhysicsIon trapAtomic physicsNuclear ExperimentStorage ringElectron coolingPhysical Review Letters
researchProduct

First Capture of Antiprotons in a Penning Trap: A Kiloelectronvolt Source

1986

Antiprotons from the Low Energy Antiproton Ring of CERN are slowed from 21 MeV to below 3 keV by being passed through 3 mm of material, mostly Be. While still in flight, the kiloelectronvolt antiprotons are captured in a Penning trap created by the sudden application of a 3-kV potential. Antiprotons are held for 100 s and more. Prospects are now excellent for much longer trapping times under better vacuum conditions. This demonstrates the feasibility of a greatly improved measurement of the inertial mass of the antiproton and opens the way to other intriguing experiments.

PhysicsAntiparticleLarge Hadron ColliderGeneral Physics and AstronomyParticle acceleratorPenning trapKinetic energylaw.inventionNuclear physicslawAntiprotonAntimatterKiloelectronvoltPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentPhysics::Atomic PhysicsDetectors and Experimental TechniquesAtomic physicsNuclear ExperimentPhysical Review Letters
researchProduct

First Capture of Antiprotons in an Ion Trap: Progress Toward a Precision Mass Measurement and Antihydrogen

1988

Antiprotons from the Low Energy Antiproton Ring of CERN are slowed from 21 MeV to below 3 keV by being passed through 3 mm of material, mostly Be. While still in flight, the kilo-electron volt antiprotons are captured in a Penning trap created by the sudden application of a 3-kV potential. Antiprotons are held for 100 s and more. Prospects are now excellent for much longer trapping times under better vacuum conditions. This demonstrates the feasibility of a greatly improved measurement of the inertial mass of the antiproton and opens the way to other intriguing experiments. The possibility of producing antihydrogen by merging cold, trapped plasmas of positrons and antiprotons is discussed.

PhysicsLarge Hadron ColliderPlasmaCondensed Matter PhysicsPenning trapMass measurementAtomic and Molecular Physics and OpticsNuclear physicsAntiprotonPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentPhysics::Atomic PhysicsIon trapInertial massNuclear ExperimentAntihydrogenMathematical PhysicsPhysica Scripta
researchProduct

Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube

2014

Made available in DSpace on 2022-04-29T07:21:49Z (GMT). No. of bitstreams: 0 Previous issue date: 2014-11-17 We report the results of a multimessenger search for coincident signals from the LIGO and Virgo gravitational-wave observatories and the partially completed IceCube high-energy neutrino detector, including periods of joint operation between 2007-2010. These include parts of the 2005-2007 run and the 2009-2010 run for LIGO-Virgo, and IceCube's observation periods with 22, 59 and 79 strings. We find no significant coincident events, and use the search results to derive upper limits on the rate of joint sources for a range of source emission parameters. For the optimistic assumption of …

MECHANISMPhysics and Astronomy (miscellaneous)AstrophysicsFOLLOW-UP OBSERVATIONSASTROPHYSICAL SOURCESIceCubeneutrinoDetection of gravitational waveGravitational waves neutrinoObservatory[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]QCLIGO Scientific CollaborationQBPhysicsGAMMA-RAY BURSTS[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Settore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for AstrophysicsASTRONOMYNuclear and High Energy Physics; Physics and Astronomy (miscellaneous)NEUTRINOSNeutrino detectorComputingMethodologies_DOCUMENTANDTEXTPROCESSINGNeutrinoSENSITIVITYGIANT FLARENuclear and High Energy Physics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]95.85.RyMUON NEUTRINOSAstrophysics::High Energy Astrophysical PhenomenaAstrophysics::Cosmology and Extragalactic AstrophysicsACCELERATIONGravitational wavesGeneral Relativity and Quantum CosmologyINSTABILITIESSettore FIS/05 - Astronomia e AstrofisicaCORE-COLLAPSE SUPERNOVAE[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]ddc:530SDG 7 - Affordable and Clean EnergyCORE-COLLAPSEDETECTOR/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energyGravitational wave95.85.SzMAGNETIZED NEUTRON-STARS[ PHYS.ASTR.HE ] Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]AstronomyTRANSIENTS95.85.Sz; 95.85.RyRELATIVISTIC STARSLIGOPhysics and Astronomy[ SDU.ASTR.HE ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Gamma-ray burstEMISSIONEnergy (signal processing)
researchProduct

A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007

2013

A search for high-energy neutrinos coming from the direction of the Sun has been performed using the data recorded by the ANTARES neutrino telescope during 2007 and 2008. The neutrino selection criteria have been chosen to maximize the selection of possible signals produced by the self-annihilation of weakly interacting massive particles accumulated in the centre of the Sun with respect to the atmospheric background. After data unblinding, the number of neutrinos observed towards the Sun was found to be compatible with background expectations. The 90% CL upper limits in terms of spin-dependent and spin-independent WIMP-proton cross-sections are derived and compared to predictions of two sup…

AstrofísicaEXPLOSIONSHigh energyPhotonPOINT SOURCESSUPERCONDUCTING COSMIC STRINGSGravitational waves / experimentsGravitational waves/experimentsAstrophysics01 natural scienceshigh energy neutrinosgravitational wavesgravitational waves / experiment010303 astronomy & astrophysicsQCmedia_commonLine (formation)QBPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)GAMMA-RAY BURSTSdark matter detectorsGravitational waves / experiments; Neutrino astronomy; Astronomy and Astrophysicshigh energy neutrinos[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Settore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for Astrophysicsgravitational waves; gravitational waves / experiments; neutrino astronomy; high energy neutrinos; high energy neutrinosgravitational wavesgravitational wavesparticle physics - cosmology connectionNeutrino astronomyCOSMIC STRINGSRELATIVISTIC JETSNeutrinoAstrophysics - High Energy Astrophysical Phenomenasupersymmetry and cosmology[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]gravitational waves / experiments; neutrino astronomyTELESCOPEmedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaSCIENCE RUNFOS: Physical sciencesddc:500.2GAMMA-RAY BURSTS; CORE-COLLAPSE SUPERNOVAE; SUPERCONDUCTING COSMIC STRINGS; MAGNETAR GIANT FLARES; SCIENCE RUN; RELATIVISTIC JETS; POINT SOURCES; BLACK-HOLES; LOCAL-RATE; TELESCOPEGravitational wavesGeneral Relativity and Quantum CosmologyCORE-COLLAPSE SUPERNOVAESettore FIS/05 - Astronomia e AstrofisicaCoincidentneutrino experiments0103 physical sciences010306 general physicsMAGNETAR GIANT FLARESBLACK-HOLESHigh Energy Astrophysical PhenomenaGravitational waveAstronomy[ PHYS.ASTR.HE ] Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Astronomy and AstrophysicsDRIVENUniverseLIGOGIANT FLARESLOCAL-RATEFISICA APLICADALUMINOSITYRADIATIONHigh Energy Physics::Experiment[ SDU.ASTR.HE ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Experiments[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct