0000000000763023

AUTHOR

Ann M. Hirt

showing 3 related works from this author

Search for magnetic monopoles with the MoEDAL forward trapping detector in 2.11 fb −1 of 13 TeV proton–proton collisions at the LHC

2018

We update our previous search for trapped magnetic monopoles in LHC Run 2 using nearly six times more integrated luminosity and including additional models for the interpretation of the data. The MoEDAL forward trapping detector, comprising 222 kg of aluminium samples, was exposed to 2.11 fb−1 of 13 TeV proton–proton collisions near the LHCb interaction point and analysed by searching for induced persistent currents after passage through a superconducting magnetometer. Magnetic charges equal to the Dirac charge or above are excluded in all samples. The results are interpreted in Drell–Yan production models for monopoles with spins 0, 1/2 and 1: in addition to standard point-like couplings, …

Particle physicsNuclear and High Energy PhysicsProtonDirac (software)magnetic monopoleMagnetic monopoleFOS: Physical sciencesddc:500.2114 Physical sciences01 natural sciences7. Clean energyHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)0202 Atomic Molecular Nuclear Particle And Plasma PhysicsHigh Energy Physics - Phenomenology (hep-ph)STOPPING-POWER0103 physical sciencesFIELD010306 general physicsParticle Physics - PhenomenologyPhysicsLuminosity (scattering theory)Large Hadron ColliderInteraction point010308 nuclear & particles physicshep-exDrell–Yan processCharge (physics)hep-phNuclear & Particles Physicslcsh:QC1-999High Energy Physics - Phenomenologylcsh:PhysicsParticle Physics - Experiment
researchProduct

Search for Magnetic Monopoles with the MoEDAL Forward Trapping Detector in 13 TeV Proton-Proton Collisions at the LHC

2017

MoEDAL is designed to identify new physics in the form of long-lived highly-ionising particles produced in high-energy LHC collisions. Its arrays of plastic nuclear-track detectors and aluminium trapping volumes provide two independent passive detection techniques. We present here the results of a first search for magnetic monopole production in 13 TeV proton-proton collisions using the trapping technique, extending a previous publication with 8 TeV data during LHC run-1. A total of 222 kg of MoEDAL trapping detector samples was exposed in the forward region and analysed by searching for induced persistent currents after passage through a superconducting magnetometer. Magnetic charges excee…

Magnetic monopolesProtonMagnetismPhysics beyond the Standard ModelGeneral Physics and Astronomy01 natural sciences7. Clean energyHigh Energy Physics - Experimentlaw.inventionCOLLIDERHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)STOPPING-POWERlawPhysics02 Physical SciencesLarge Hadron ColliderSTABLE MASSIVE PARTICLESPhysicsMagnetismDrell–Yan processhep-phPersistent currents3. Good healthHigh Energy Physics - PhenomenologyPhysical SciencesELECTROWEAK MONOPOLEParticle Physics - ExperimentGeneral PhysicsMagnetometerPhysics MultidisciplinaryMagnetic monopoleFOS: Physical sciencesNuclear track detector114 Physical sciencesNuclear physicsPhysics and Astronomy (all)Tellurium compoundsHigh energy physics Magnetism Magnetometers Highly ionizing particles Magnetic charges Magnetic monopoles Nuclear track detector Passive detection Persistent currents Proton proton collisions Trapping techniques Tellurium compounds0103 physical sciencesHigh energy physics010306 general physicsColliderIONIZING PARTICLESScience & TechnologyProton proton collisionshep-ex010308 nuclear & particles physicsMagnetometers Highly ionizing particlesMagnetic chargesTrapping techniquesPassive detectionSTATES
researchProduct

First search for dyons with the full MoEDAL trapping detector in 13 TeV pp collisions

2021

The MoEDAL trapping detector, consists of approximately 800 kg of aluminium volumes. It was exposed during Run-2 of the LHC program to 6.46 fb^-1 of 13 TeV proton-proton collisions at the LHCb interaction point. Evidence for dyons (particles with electric and magnetic charge) captured in the trapping detector was sought by passing the aluminium volumes comprising the detector through a SQUID magnetometer. The presence of a trapped dyon would be signalled by a persistent current induced in the SQUID magnetometer. On the basis of a Drell-Yan production model, we exclude dyons with a magnetic charge ranging up to 5 Dirac charges, and an electric charge up to 200 times the fundamental electric …

General PhysicsMoEDAL electric and magnetic charge dyonPhysics MultidisciplinaryMagnetic monopoleFOS: Physical sciencesGeneral Physics and Astronomy01 natural sciences7. Clean energyElectric charge114 Physical sciencesMoEDAL Collaboration09 Engineeringlaw.inventionHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)MAGNETIC MONOPOLESSTOPPING-POWERlaw0103 physical sciencesPARTICLES010306 general physics01 Mathematical SciencesParticle Physics - PhenomenologyPhysicsRange (particle radiation)Large Hadron ColliderScience & Technology02 Physical Scienceshep-exPhysicsDetectorPersistent currenthep-phSQUIDHigh Energy Physics - PhenomenologyDyonPhysical SciencesHigh Energy Physics::ExperimentParticle Physics - Experiment
researchProduct