0000000000764673

AUTHOR

T. Garcia

SU-E-T-176: Commissiong and Initial Clinical Experience with Dosimetry Check, a Commercial Software for in Vivo Volumetric Dosimetry

Purpose: The aim of this work is to study the differences of reference point doses between the commercial EPID based dosimetry software Dosimetry Check (DC) and TPS to establish an accuracy level of the system, to evaluate its use in clinical routine and to obtain results for the first patients. Methods: We used DC v.3.8 (Math Resolutions), two Varian Clinac iX accelerators equipped with EPID aS1000 and Eclipse v.10.0 with AAA algorithm. Several plans with and without air gap were generated over the phantoms: MP1 Water Tank and Solid Octavius 4D (PTW). 5 head and neck, 3 lung and 4 prostate cases were selected for clinical evaluation. We compared the calculated dose at the isocenter and in …

research product

OMC: An Optical Monitoring Camera for INTEGRAL

The Optical Monitoring Camera (OMC) will observe the optical emission from the prime targets of the gamma- ray instruments onboard the ESA mission INTEGRAL, with the support of the JEM-X monitor in the X-ray domain. This capability will provide invaluable diagnostic information on the nature and the physics of the sources over a broad wavelength range. Its main scientific objectives are: (1) to monitor the optical emission from the sources observed by the gamma- and X-ray instruments, measuring the time and intensity structure of the optical emission for comparison with variability at high energies, and (2) to provide the brightness and position of the optical counterpart of any gamma- or X…

research product

EP-1131: Octavius 4D 1000 SRS, a new instrument for SBRT VMAT IMRT verification. Commissioning and clinical implementation

research product

OMC: An Optical Monitoring Camera for INTEGRAL - Instrument description and performance

The Optical Monitoring Camera (OMC) will observe the optical emission from the prime targets of the gammaray instruments onboard the ESA mission INTEGRAL, with the support of the JEM-X monitor in the X-ray domain. This capability will provide invaluable diagnostic information on the nature and the physics of the sources over a broad wavelength range. Its main scientific objectives are: ( 1) to monitor the optical emission from the sources observed by the gamma- and X-ray instruments, measuring the time and intensity structure of the optical emission for comparison with variability at high energies, and ( 2) to provide the brightness and position of the optical counterpart of any gamma- or X…

research product