0000000000765125

AUTHOR

Amata Mercurio

Early Results from GLASS-JWST. XX. Unveiling a Population of “Red Excess” Galaxies in Abell2744 and in the Coeval Field

We combine JWST/NIRCam imaging and MUSE data to characterize the properties of galaxies in different environmental conditions in the cluster Abell2744 ($z=0.3064$) and in its immediate surroundings. We investigate how galaxy colors, morphology and star forming fractions depend on wavelength and on different parameterizations of environment. Our most striking result is the discovery of a ``red-excess'' population in F200W$-$F444W colors both in the cluster regions and the field. These galaxies have normal F115W$-$F150W colors, but are up to 0.8 mag redder than red sequence galaxies in F200W$-$F444W. They also have rather blue rest frame B$-$V colors. {Galaxies in the field and at the cluster…

research product

The GLASS-JWST Early Release Science Program. III. Strong lensing model of Abell 2744 and its infalling regions

We present a new high-precision, JWST-based, strong lensing model for the galaxy cluster Abell 2744 at $z=0.3072$. By combining the deep, high-resolution JWST imaging from the GLASS-JWST and UNCOVER programs and a Director's Discretionary Time program, with newly obtained VLT/MUSE data, we identify 32 multiple images from 11 background sources lensed by two external sub-clusters at distances of ~160" from the main cluster. The new MUSE observations enable the first spectroscopic confirmation of a multiple image system in the external clumps. Moreover, the re-analysis of the spectro-photometric archival and JWST data yields 27 additional multiple images in the main cluster. The new lens mode…

research product

$\mathrm{morphofit}$: An automated galaxy structural parameters fitting package

In today's modern wide-field galaxy surveys, there is the necessity for parametric surface brightness decomposition codes characterised by accuracy, small degree of user intervention, and high degree of parallelisation. We try to address this necessity by introducing $\mathrm{morphofit}$, a highly parallelisable $\mathrm{Python}$ package for the estimate of galaxy structural parameters. The package makes use of wide-spread and reliable codes, namely $\mathrm{SExtractor}$ and $\mathrm{GALFIT}$. It has been optimised and tested in both low-density and crowded environments, where blending and diffuse light makes the structural parameters estimate particularly challenging. $\mathrm{morphofit}$ …

research product