0000000000765217

AUTHOR

F. L. Pratt

showing 3 related works from this author

Magnetic phase diagram of La$_{2-x}$Sr$_{x}$CoO$_{4}$ revised using muon-spin relaxation

2015

We report the results of a muon-spin relaxation ($\mu$SR) investigation of La$_{2-x}$Sr$_{x}$CoO$_{4}$, an antiferromagnetic insulating series which has been shown to support charge ordered and magnetic stripe phases and an hourglass magnetic excitation spectrum. We present a revised magnetic phase diagram, which shows that the suppression of the magnetic ordering temperature is highly sensitive to small concentrations of holes. Distinct behavior within an intermediate $x$ range ($0.2 \leq x \lesssim 0.6$) suggests that the putative stripe ordered phase extends to lower $x$ than previously thought. Further charge doping ($0.67 \leq x \leq 0.9$) prevents magnetic ordering for $T \gtrsim 1.5~…

Condensed Matter - Strongly Correlated ElectronsStrongly Correlated Electrons (cond-mat.str-el)FOS: Physical sciencesCondensed Matter::Strongly Correlated Electrons
researchProduct

Quantum Phases and Spin Liquid Properties of 1T-TaS2

2021

Quantum materials exhibiting magnetic frustration are connected to diverse phenomena including high-Tc superconductivity, topological order and quantum spin liquids (QSLs). A QSL is a quantum phase (QP) related to a quantum-entangled fluid-like state of matter. Previous experiments on QSL candidate materials are usually interpreted in terms of a single QP, although theories indicate that many distinct QPs are closely competing in typical frustrated spin models. Here we report on combined temperature-dependent muon spin relaxation and specific heat measurements for the triangular-lattice QSL candidate material 1T-TaS2 that provide evidence for competing QPs. The measured properties are assig…

FOS: Physical sciences02 engineering and technologyQuantum phases01 natural sciencesCondensed Matter - Strongly Correlated ElectronsMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesTopological orderAtomic physics. Constitution and properties of matter010306 general physicsSpin (physics)MaterialsQuantumMaterials of engineering and construction. Mechanics of materialsPhysicsCondensed Matter - Materials ScienceStrongly Correlated Electrons (cond-mat.str-el)Condensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsQuàntums Teoria delsMaterials Science (cond-mat.mtrl-sci)Muon spin spectroscopy021001 nanoscience & nanotechnologyCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsState of matterTA401-492Quantum spin liquid0210 nano-technologyCharge density waveQC170-197
researchProduct

Two hybrid organometallic-inorganic layered magnets from the series [ ZIIICp*2] [ MIIMIII(ox)3] studied with μ+SR

2004

We present zero-field muon spin relaxation (ZF-μ + SR) measurements on two examples of a new series of hybrid organometallic-inorganic layered magnets, namely ferromagnetic [FeCp* 2 ][MnCr(ox) 3 ] and ferrimagnetic [CoCp* 2 ][FeFe(ox) 3 ] (where ox = oxalate and Cp* = pentame- thyl-cyclopentadienyl). Both materials show multi-component muon spin precession signals characteristic of quasistatic magnetic fields at several distinct muon sites. The temperature dependence of the precession frequencies allow critical exponents to be extracted. Possible muon sites are discussed on the basis of dipole field calculations.

MuonCondensed matter physicsFerromagnetismFerrimagnetismChemistryMagnetRelaxation (NMR)General Physics and AstronomyMuon spin spectroscopyMagnetic dipoleMagnetic fieldJournal de Physique IV (Proceedings)
researchProduct