0000000000765220
AUTHOR
S. J. Blundell
Magnetic phase diagram of La$_{2-x}$Sr$_{x}$CoO$_{4}$ revised using muon-spin relaxation
We report the results of a muon-spin relaxation ($\mu$SR) investigation of La$_{2-x}$Sr$_{x}$CoO$_{4}$, an antiferromagnetic insulating series which has been shown to support charge ordered and magnetic stripe phases and an hourglass magnetic excitation spectrum. We present a revised magnetic phase diagram, which shows that the suppression of the magnetic ordering temperature is highly sensitive to small concentrations of holes. Distinct behavior within an intermediate $x$ range ($0.2 \leq x \lesssim 0.6$) suggests that the putative stripe ordered phase extends to lower $x$ than previously thought. Further charge doping ($0.67 \leq x \leq 0.9$) prevents magnetic ordering for $T \gtrsim 1.5~…
Two hybrid organometallic-inorganic layered magnets from the series [ ZIIICp*2] [ MIIMIII(ox)3] studied with μ+SR
We present zero-field muon spin relaxation (ZF-μ + SR) measurements on two examples of a new series of hybrid organometallic-inorganic layered magnets, namely ferromagnetic [FeCp* 2 ][MnCr(ox) 3 ] and ferrimagnetic [CoCp* 2 ][FeFe(ox) 3 ] (where ox = oxalate and Cp* = pentame- thyl-cyclopentadienyl). Both materials show multi-component muon spin precession signals characteristic of quasistatic magnetic fields at several distinct muon sites. The temperature dependence of the precession frequencies allow critical exponents to be extracted. Possible muon sites are discussed on the basis of dipole field calculations.