0000000000765280

AUTHOR

Joan Torrent

0000-0002-6908-4084

Conical nanopores highlight the pro-aggregating effects of pyrimethanil fungicide on Aβ(1-42) peptides and dimeric splitting phenomena.

International audience; The Aβ(1-42) aggregation is a key event in the physiopathology of Alzheimer's disease (AD). Exogenous factors such as environmental pollutants, and more particularly pesticides, can corrupt Aβ(1-42) assembly and could influence the occurrence and pathophysiology of AD. However, pesticide involvement in the early stages of Aβ(1-42) aggregation is still unknown. Here, we employed conical track-etched nanopore in order to analyse the Aβ(1-42) fibril formation in the presence of pyrimethanil, a widely used fungicide belonging to the anilinopyrimidine class. Our results evidenced a pro-aggregating effect of pyrimethanil on Aβ(1-42). Aβ(1-42) assemblies were successfully d…

research product

Detection of Amyloid-β Fibrils Using Track-Etched Nanopores: Effect of Geometry and Crowding

Several neurodegenerative diseases have been linked to proteins or peptides that are prone to aggregate in different brain regions. Aggregation of amyloid-β (Aβ) peptides is recognized as the main cause of Alzheimer's disease (AD) progression, leading to the formation of toxic Aβ oligomers and amyloid fibrils. The molecular mechanism of Aβ aggregation is complex and still not fully understood. Nanopore technology provides a new way to obtain kinetic and morphological aspects of Aβ aggregation at a single-molecule scale without labeling by detecting the electrochemical signal of the peptides when they pass through the hole. Here, we investigate the influence of nanoscale geometry (conical an…

research product