0000000000765415
AUTHOR
María I. González-sánchez
Electrochemical performance of activated screen printed carbon electrodes for hydrogen peroxide and phenol derivatives sensing
Screen-printed carbon electrodes (SPCEs) are widely used for the electroanalysis of a plethora of organic and inorganic compounds. These devices offer unique properties to address electroanalytical chemistry challenges and can successfully compete in numerous aspects with conventional carbon-based electrodes. However, heterogeneous kinetics on SPCEs surfaces is comparatively sluggish, which is why the electrochemical activation of inks is sometimes required to improve electron transfer rates and to enhance sensing performance. In this work, SPCEs were subjected to different electrochemical activation methods and the response to H2O2 electroanalysis was used as a testing probe. Changes in to…
Highly activated screen-printed carbon electrodes by electrochemical treatment with hydrogen peroxide
An easy effective method for the activation of commercial screen-printed carbon electrodes (SPCEs) using H2O2 is presented to enhance sensing performances of carbon ink. Electrochemical activation consists of 25 repetitive voltammetric cycles at 10 mV s−1 using 10 mM H2O2 in phosphate buffer (pH 7). This treatment allowed us to reach a sensitivity of 0.24 ± 0.01 μA μM−1 cm−2 for the electroanalysis of H2O2, which is 140-fold higher than that of untreated SPCEs and 6-fold more than screen-printed platinum electrodes (SPPtEs). Electrode surface properties were characterized by SEM, EIS and XPS. The results revealed atomic level changes at the electrode surface, with the introduction of new ca…