0000000000765559

AUTHOR

B. Jigmeddorj

showing 2 related works from this author

Testing microscopically derived descriptions of nuclear collectivity: Coulomb excitation of Mg-22

2018

Many-body nuclear theory utilizing microscopic or chiral potentials has developed to the point that collectivity might be dealt with in an {\it ab initio} framework without the use of effective charges; for example with the proper evolution of operators, or alternatively, through the use of an appropriate and manageable subset of particle-hole excitations. We present a precise determination of $E2$ strength in $^{22}$Mg and its mirror $^{22}$Ne by Coulomb excitation, allowing for rigorous comparisons with theory. No-core symplectic shell-model calculations were performed and agree with the new $B(E2)$ values while in-medium similarity-renormalization-group calculations consistently underpre…

Nuclear and High Energy Physics3106IsoscalarCollectivityCoulomb excitationAb initioFOS: Physical sciences22NeCoulomb excitationAstronomy & Astrophysics01 natural sciencesPhysics Particles & FieldsMg-22Quantum mechanics0103 physical sciencesSensitivity (control systems)collectivityNuclear Experiment (nucl-ex)010306 general physicsNuclear theoryNuclear ExperimentPhysicsScience & TechnologyIsovectorta114010308 nuclear & particles physicsOperator (physics)Physics22MgNe-22lcsh:QC1-999Physics NuclearSTATESPhysical SciencesAb initiolcsh:PhysicsSymplectic geometry
researchProduct

Testing microscopically derived descriptions of nuclear collectivity: Coulomb excitation of Mg

2018

Many-body nuclear theory utilizing microscopic or chiral potentials has developed to the point that collectivity might be studied within a microscopic or ab initio framework without the use of effective charges; for example with the proper evolution of the E2 operator, or alternatively, through the use of an appropriate and manageable subset of particle–hole excitations. We present a precise determination of E2 strength in 22Mg and its mirror 22Ne by Coulomb excitation, allowing for rigorous comparisons with theory. No-core symplectic shell-model calculations were performed and agree with the new B(E2) values while in-medium similarity-renormalization-group calculations consistently underpr…

Physics Letters
researchProduct