0000000000769218

AUTHOR

Chiara Gabbiani

0000-0002-8468-4838

showing 4 related works from this author

Selected cytotoxic gold compounds cause significant inhibition of 20S proteasome catalytic activities

2014

Abstract Six structurally diverse cytotoxic gold compounds are reported to cause profound and differential inhibition of the three main catalytic activities of purified 20S proteasome whilst auranofin , an established gold(I) drug in clinical use, is nearly ineffective. In particular, the gold(I) complex [( pbiH ) Au ( PPh 3 )] PF 6 , turns out to be the most potent inhibitor of all three enzyme activities with sub-micromolar IC 50 values. The present results further support the view that proteasome inhibition may play a major – yet not exclusive – role in the cytotoxic actions of gold based anticancer agents.

DrugProteasome Endopeptidase ComplexAuranofinmedia_common.quotation_subjectAntineoplastic AgentsPharmacologyBiochemistry20s proteasomeProteasome Gold compounds Anticancer drugs Enzyme inhibitionCatalysisInorganic ChemistryInhibitory Concentration 50Structure-Activity RelationshipGold CompoundsCoordination ComplexesAuranofinmedicineHumansCytotoxic T cellmedia_commonchemistry.chemical_classificationCytotoxinsChemistryEnzymeProteasomeBiochemistryBiocatalysisOrganogold CompoundsProteasome Inhibitorsmedicine.drug
researchProduct

124I Radiolabeling of a AuIII‐NHC Complex for In Vivo Biodistribution Studies†

2020

Abstract AuIII complexes with N‐heterocyclic carbene (NHC) ligands have shown remarkable potential as anticancer agents, yet their fate in vivo has not been thoroughly examined and understood. Reported herein is the synthesis of new AuIII‐NHC complexes by direct oxidation with radioactive [124I]I2 as a valuable strategy to monitor the in vivo biodistribution of this class of compounds using positron emission tomography (PET). While in vitro analyses provide direct evidence for the importance of AuIII‐to‐AuI reduction to achieve full anticancer activity, in vivo studies reveal that a fraction of the AuIII‐NHC prodrug is not immediately reduced after administration but able to reach the major…

Imaging Agents | Hot Paperpositron emission tomography010405 organic chemistryChemistryGeneral ChemistryProdrug010402 general chemistryanticancer01 natural sciencesCombinatorial chemistryCatalysisIn vitro3. Good health0104 chemical sciencesIn vivoIn vivo biodistributionSettore CHIM/03 - Chimica Generale E InorganicametallodrugsN-heterocyclic carbenesanticancer; metallodrugs; N-heterocyclic carbenes; positron emission tomography; radiochemistryradiochemistryResearch ArticlesResearch ArticleAngewandte Chemie (International Ed. in English)
researchProduct

CCDC 1989307: Experimental Crystal Structure Determination

2021

Related Article: Federica Guarra, Alessio Terenzi, Christine Pirker, Rossana Passannante, Dina Baier, Ennio Zangrando, Vanessa G��mez���Vallejo, Tarita Biver, Chiara Gabbiani, Walter Berger, Jordi Llop, Luca Salassa|2020|Angew.Chem.,Int.Ed.|59|17130|doi:10.1002/anie.202008046

Space GroupCrystallographyCrystal SystemCrystal Structure(1-butyl-3-methyl-23-dihydro-1H-imidazol-2-yl)-(chloro)-diiodo-gold(iii)Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1989306: Experimental Crystal Structure Determination

2021

Related Article: Federica Guarra, Alessio Terenzi, Christine Pirker, Rossana Passannante, Dina Baier, Ennio Zangrando, Vanessa G��mez���Vallejo, Tarita Biver, Chiara Gabbiani, Walter Berger, Jordi Llop, Luca Salassa|2020|Angew.Chem.,Int.Ed.|59|17130|doi:10.1002/anie.202008046

Space GroupCrystallographyCrystal Systembis(1-butyl-3-methyl-23-dihydro-1H-imidazol-2-ylidene)-(diiodo)-gold(iii) hexafluorophosphateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct