0000000000770603

AUTHOR

Hoang Nguyen

showing 2 related works from this author

Formulation and validation of a reduced order model of 2D materials exhibiting a two-phase microstructure as applied to graphene oxide

2018

Abstract Novel 2D materials, e.g., graphene oxide (GO), are attractive building blocks in the design of advanced materials due to their reactive chemistry, which can enhance interfacial interactions while providing good in-plane mechanical properties. Recent studies have hypothesized that the randomly distributed two-phase microstructure of GO, which arises due to its oxidized chemistry, leads to differences in nano- vs meso‑scale mechanical responses. However, this effect has not been carefully studied using molecular dynamics due to computational limitations. Herein, a continuum mechanics model, formulated based on density functional based tight binding (DFTB) constitutive results for GO …

Materials scienceFinite element analysiMembrane deflection02 engineering and technologyCondensed Matter Physic010402 general chemistry01 natural scienceslaw.inventionMolecular dynamicsTight bindingContinuum damage modellawNano-MonolayerMechanics of MaterialComposite materialGraphene oxideContinuum mechanicsGrapheneMechanical Engineering021001 nanoscience & nanotechnologyCondensed Matter PhysicsMicrostructureRepresentative volume elementFinite element method0104 chemical sciencesMechanics of MaterialsChemical physicsModel development and validation0210 nano-technology
researchProduct

Dislocation interaction with C in α-Fe: a comparison between atomic simulations and elasticity theory

2008

International audience; The interaction of C atoms with a screw and an edge dislocation is modelled at an atomic scale using an empirical Fe-C interatomic potential based on the Embedded Atom Method (EAM) and molecular statics simulations. Results of atomic simulations are compared with predictions of elasticity theory. It is shown that a quantitative agreement can be obtained between both modelling techniques as long as anisotropic elastic calculations are performed and both the dilatation and the tetragonal distortion induced by the C interstitial are considered. Using isotropic elasticity allows to predict the main trends of the interaction and considering only the interstitial dilatatio…

Materials sciencePolymers and Plastics[ SPI.MAT ] Engineering Sciences [physics]/MaterialsFOS: Physical sciencesInteratomic potential02 engineering and technology[SPI.MAT] Engineering Sciences [physics]/Materials01 natural sciencesAtomic units[SPI.MAT]Engineering Sciences [physics]/MaterialsCondensed Matter::Materials ScienceTetragonal crystal systemedge dislocation0103 physical sciencesAtomanisotropic elasticityElasticity (economics)010306 general physicsAnisotropyComputingMilieux_MISCELLANEOUSCottrell atmospheresCondensed Matter - Materials ScienceCondensed matter physicsMetals and AlloysMaterials Science (cond-mat.mtrl-sci)Fe-C alloysbinding energy021001 nanoscience & nanotechnologyFinite element methodElectronic Optical and Magnetic Materialsscrew dislocationClassical mechanics[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Ceramics and CompositesDislocation0210 nano-technology
researchProduct