0000000000771497

AUTHOR

D. Van Eijk

showing 23 related works from this author

Search for theX(4140)state inB+→J/ψϕK+decays

2012

We investigate the decay B+ -> J/psi phi K+ in a search for the X(4140) state, a narrow threshold resonance in the J/psi phi system. The data sample corresponds to an integrated luminosity of 10.4 fb(-1) of p (p) over bar collisions at root s = 1.96 TeV collected by the D0 experiment at the Fermilab Tevatron collider. We observe a mass peak with a statistical significance of 3.1 standard deviations and measure its invariant mass to be M = 4159.0 +/- 4.3(stat) +/- 6.6(syst) MeV and its width to be Gamma = 19.9 +/- 12.6(stat)(-8.0)(+3.0)(syst) MeV.

Particle physicsNuclear and High Energy PhysicsTevatronAnalytical chemistryAstrophysics::Cosmology and Extragalactic Astrophysics7. Clean energy01 natural scienceslaw.inventionNuclear physicslaw0103 physical sciencesInvariant massB mesonFermilabNuclear ExperimentCollider010306 general physicsPhysicsLuminosity (scattering theory)Branching fraction010308 nuclear & particles physicsResonanceState (functional analysis)D0 experimentPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentAtomic physicsProduction ratePhysical Review D
researchProduct

Observations of Bs0→ψ(2S)η and B(s)0→ψ(2S)π+π− decays

2013

First observations of the $B^0_s \rightarrow \psi(2S) \eta$, $B^0 \rightarrow \psi(2S) \pi^+ \pi^-$ and $B^0_s \rightarrow \psi(2S) \pi^+ \pi^-$ decays are made using a dataset corresponding to an integrated luminosity of 1.0~$fb^{-1}$ collected by the LHCb experiment in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=7$ TeV. The ratios of the branching fractions of each of the $\psi(2S)$ modes with respect to the corresponding $J/\psi$ decays are \[ \frac{\mathcal{B}(B^0_s \rightarrow \psi(2S) \eta) }{\mathcal{B}(B^0_s \rightarrow J/\psi \eta)} =0.83\pm0.14\,(stat)\pm0.12\,(syst)\pm0.02\,(\mathcalB}), \] \[ \frac{\mathcal{B}(B^0 \rightarrow \psi(2S) \pi^+ \pi^-)}{\mathcal{…

PhysicsNuclear and High Energy PhysicsParticle physicsMeson010308 nuclear & particles physicsHigh Energy Physics::Phenomenology01 natural sciences0103 physical sciencesPiHigh Energy Physics::ExperimentAstrophysics::Earth and Planetary AstrophysicsNuclear Experiment010306 general physicsAstrophysics::Galaxy AstrophysicsNuclear Physics B
researchProduct

Follow-up of Astrophysical Transients in Real Time with the IceCube Neutrino Observatory

2020

In multi-messenger astronomy, rapid investigation of interesting transients is imperative. As an observatory with a 4$\pi$ steradian field of view and $\sim$99\% uptime, the IceCube Neutrino Observatory is a unique facility to follow up transients, and to provide valuable insight for other observatories and inform their observing decisions. Since 2016, IceCube has been using low-latency data to rapidly respond to interesting astrophysical events reported by the multi-messenger observational community. Here, we describe the pipeline used to perform these follow up analyses and provide a summary of the 58 analyses performed as of July 2020. We find no significant signal in the first 58 analys…

High Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HEPhysics010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaAstrophysics::Instrumentation and Methods for AstrophysicsNeutrino astronomy; High energy astrophysicsFOS: Physical sciencesAstronomy and AstrophysicsAstrophysics01 natural sciencesIceCube Neutrino ObservatoryNeutrino astronomySpace and Planetary ScienceObservatory0103 physical sciencesNeutrinoNeutrino astronomyAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for AstrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)High energy astrophysics010303 astronomy & astrophysicsastro-ph.IM0105 earth and related environmental sciencesThe Astrophysical Journal
researchProduct

Time-integrated Neutrino Source Searches with 10 years of IceCube Data

2020

Physical review letters 124(5), 051103 (1-9) (2020). doi:10.1103/PhysRevLett.124.051103

background [atmosphere]Astrophysics::High Energy Astrophysical Phenomenamedia_common.quotation_subjectGeneral Physics and AstronomyFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysics53001 natural sciencesIceCubeparticle source [neutrino]TRACK RECONSTRUCTION0103 physical sciencesddc:530atmosphere [muon]010306 general physicsAstrophysics::Galaxy Astrophysicsmedia_commonastro-ph.HEPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)MuonAstrophysics::Instrumentation and Methods for AstrophysicsNorthern HemisphereAstronomyGalaxymessengerPhysics and AstronomySkycorrelationtime dependenceupgradegalaxyNeutrinoAstrophysics - High Energy Astrophysical Phenomenastatistical
researchProduct

IceCube-Gen2: The Window to the Extreme Universe

2020

The observation of electromagnetic radiation from radio to $\gamma$-ray wavelengths has provided a wealth of information about the universe. However, at PeV (10$^{15}$ eV) energies and above, most of the universe is impenetrable to photons. New messengers, namely cosmic neutrinos, are needed to explore the most extreme environments of the universe where black holes, neutron stars, and stellar explosions transform gravitational energy into non-thermal cosmic rays. The discovery of cosmic neutrinos with IceCube has opened this new window on the universe. In this white paper, we present an overview of a next-generation instrument, IceCube-Gen2, which will sharpen our understanding of the proce…

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HENuclear and High Energy PhysicsActive galactic nucleus010308 nuclear & particles physicsHigh-energy astronomyGravitational wavemedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaAstrophysics::Instrumentation and Methods for AstrophysicsAstronomyFOS: Physical sciencesCosmic ray01 natural sciencesUniverseNeutron star0103 physical sciencesNeutrinoNeutrino astronomyAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysicsmedia_common
researchProduct

EV-Scale Sterile Neutrino Search Using Eight Years of Atmospheric Muon Neutrino Data from the IceCube Neutrino Observatory

2020

Physical review letters 125(14), 141801 (1-11) (2020). doi:10.1103/PhysRevLett.125.141801

Sterile neutrinoPhysics::Instrumentation and DetectorsGeneral Physics and Astronomysterile [neutrino]01 natural sciencesCosmologyIceCubeHigh Energy Physics - ExperimentSubatomär fysikHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)Astronomi astrofysik och kosmologiSubatomic PhysicsTOOLAstronomy Astrophysics and Cosmologyatmosphere [muon]Muon neutrinoPhysicsPhysicsoscillation [neutrino]Astrophysics::Instrumentation and Methods for Astrophysicshep-phneutrino: sterilemass difference [neutrino]ddc:muon: atmosphereobservatoryHigh Energy Physics - PhenomenologyPhysique des particules élémentairessignatureParticle physicsdata analysis methodScale (ratio)Astrophysics::High Energy Astrophysical Phenomenaneutrino: mass differenceFOS: Physical sciences530IceCube Neutrino Observatorystatistical analysis0103 physical sciencesOSCILLATIONSddc:530010306 general physicshep-exICEHigh Energy Physics::Phenomenologyneutrino: mixing angleCONVERSIONPhysics and AstronomyCOSMOLOGYHigh Energy Physics::Experimentneutrino: oscillationBAYESIAN-INFERENCEmixing angle [neutrino]experimental results
researchProduct

A search for time-dependent astrophysical neutrino emission with IceCube data from 2012 to 2017

2020

Abstract High-energy neutrinos are unique messengers of the high-energy universe, tracing the processes of cosmic ray acceleration. This paper presents analyses focusing on time-dependent neutrino point-source searches. A scan of the whole sky, making no prior assumption about source candidates, is performed, looking for a space and time clustering of high-energy neutrinos in data collected by the IceCube Neutrino Observatory between 2012 and 2017. No statistically significant evidence for a time-dependent neutrino signal is found with this search during this period, as all results are consistent with the background expectation. Within this study period, the blazar 3C 279, showed strong var…

010504 meteorology & atmospheric sciencesHigh-energy astronomyAstrophysics::High Energy Astrophysical Phenomenamedia_common.quotation_subjectmodel [emission]FOS: Physical sciencesCosmic rayAstrophysics01 natural scienceslaw.inventionIceCube Neutrino ObservatoryIceCubeblazarlawemission [gamma ray]0103 physical sciencesCosmic ray sources; High-energy astrophysics; Particle astrophysicsenergy: high [neutrino]Blazar010303 astronomy & astrophysics0105 earth and related environmental sciencesmedia_commonHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HEAstroparticle physicsPhysicsbackgroundAstronomy and AstrophysicsCosmic ray sourcesUniverseHigh-energy astrophysicsmessengerobservatorySpace and Planetary Scienceddc:520time dependenceacceleration [cosmic radiation]NeutrinoAstrophysics - High Energy Astrophysical PhenomenaParticle astrophysicsFlare
researchProduct

LeptonInjector and LeptonWeighter: A neutrino event generator and weighter for neutrino observatories

2021

We present a high-energy neutrino event generator, called LeptonInjector, alongside an event weighter, called LeptonWeighter. Both are designed for large-volume Cherenkov neutrino telescopes such as IceCube. The neutrino event generator allows for quick and flexible simulation of neutrino events within and around the detector volume, and implements the leading Standard Model neutrino interaction processes relevant for neutrino observatories: neutrino-nucleon deep-inelastic scattering and neutrino-electron annihilation. In this paper, we discuss the event generation algorithm, the weighting algorithm, and the main functions of the publicly available code, with examples.

Particle physicsPhysics::Instrumentation and DetectorsComputer scienceAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGeneral Physics and AstronomyCHERENKOV LIGHT YIELDWeighting01 natural sciencesHigh Energy Physics - Experiment010305 fluids & plasmasStandard ModelHigh Energy Physics - Experiment (hep-ex)Neutrino interactionHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciences010306 general physicsCherenkov radiationEvent generatorEvent generator; Neutrino generator; Neutrino interaction; Neutrino simulation; WeightingGenerator (computer programming)hep-exEvent (computing)ICEHigh Energy Physics::PhenomenologyDetectorhep-phComputational Physics (physics.comp-ph)Quantitative Biology::GenomicsHigh Energy Physics - Phenomenologyphysics.comp-phHardware and ArchitectureHigh Energy Physics::ExperimentNeutrino simulationNeutrino generatorEvent generatorNeutrinoPhysics - Computational PhysicsLeptonComputer Physics Communications
researchProduct

Search for direct CP violation in D0→h−h+ modes using semileptonic B decays

2013

A search for direct CP violation in D0 -> h- h+ (where h=K or pi) is presented using data corresponding to an integrated luminosity of 1.0 fb^-1 collected in 2011 by LHCb in pp collisions at a centre-of-mass energy of 7 TeV. The analysis uses D0 mesons produced in inclusive semileptonic b-hadron decays to the D0 mu X final state, where the charge of the accompanying muon is used to tag the flavour of the D0 meson. The difference in the CP-violating asymmetries between the two decay channels is measured to be Delta A_CP = A_CP(K-K+) - A_CP(pi-pi+) = (0.49 +- 0.30 (stat) +- 0.14 (syst)) % . This result does not confirm the evidence for direct CP violation in the charm sector reported in other…

PhysicsNuclear and High Energy PhysicsParticle physicsMuonMeson010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyFlavourCharge (physics)01 natural sciencesLuminosityNuclear physicsDecay time0103 physical sciencesCP violationHigh Energy Physics::ExperimentCharm (quantum number)Nuclear Experiment010306 general physicsPhysics Letters B
researchProduct

Measurements of the Λb0→J/ψΛ decay amplitudes and the Λb0 polarisation in pp collisions at s=7 TeV

2013

An angular analysis of Λ0b→J/ψΛ decays is performed using a data sample corresponding to 1.0 fb−1 collected in pp collisions at √s=7 TeV with the LHCb detector at the LHC. A parity violating asymmetry parameter characterising the Λ0b→J/ψΛ decay of 0.05±0.17±0.07 and a Λ0b transverse production polarisation of 0.06±0.07±0.02 are measured, where the first uncertainty is statistical and the second systematic.

PhysicsNuclear and High Energy PhysicsParticle physicsLarge Hadron Collider010308 nuclear & particles physicsmedia_common.quotation_subjectDetectorParity (physics)Astrophysics::Cosmology and Extragalactic AstrophysicsLambda01 natural sciences7. Clean energyHelicityAsymmetryNuclear physicsTransverse planeAmplitude0103 physical sciencesHigh Energy Physics::ExperimentAstrophysics::Earth and Planetary Astrophysics010306 general physicsmedia_commonPhysics Letters B
researchProduct

A Convolutional Neural Network based Cascade Reconstruction for the IceCube Neutrino Observatory

2021

Continued improvements on existing reconstruction methods are vital to the success of high-energy physics experiments, such as the IceCube Neutrino Observatory. In IceCube, further challenges arise as the detector is situated at the geographic South Pole where computational resources are limited. However, to perform real-time analyses and to issue alerts to telescopes around the world, powerful and fast reconstruction methods are desired. Deep neural networks can be extremely powerful, and their usage is computationally inexpensive once the networks are trained. These characteristics make a deep learning-based approach an excellent candidate for the application in IceCube. A reconstruction …

FOS: Computer and information sciencesComputer Science - Machine LearningAstrophysics::High Energy Astrophysical Phenomenacs.LGData analysisFOS: Physical sciencesFitting methods01 natural sciencesConvolutional neural networkCalibration; Cluster finding; Data analysis; Fitting methods; Neutrino detectors; Pattern recognitionHigh Energy Physics - ExperimentIceCube Neutrino ObservatoryMachine Learning (cs.LG)High Energy Physics - Experiment (hep-ex)Pattern recognition0103 physical sciencesNeutrino detectors010303 astronomy & astrophysicsInstrumentationMathematical Physics010308 nuclear & particles physicsbusiness.industryhep-exDeep learningCluster findingDetectorNeutrino detectorComputer engineeringOrders of magnitude (time)13. Climate actionCascadeCalibrationPattern recognition (psychology)Artificial intelligencebusiness
researchProduct

Constraints on neutrino emission from nearby galaxies using the 2MASS redshift survey and IceCube

2020

The distribution of galaxies within the local universe is characterized by anisotropic features. Observatories searching for the production sites of astrophysical neutrinos can take advantage of these features to establish directional correlations between a neutrino dataset and overdensities in the galaxy distribution in the sky. The results of two correlation searches between a seven-year time-integrated neutrino dataset from the IceCube Neutrino Observatory, and the 2MASS Redshift Survey (2MRS) catalog are presented here. The first analysis searches for neutrinos produced via interactions between diffuse intergalactic Ultra-High Energy Cosmic Rays (UHECRs) and the matter contained within …

Astrophysics::High Energy Astrophysical PhenomenaUHE [cosmic radiation]FOS: Physical sciencesanisotropyAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesIceCubeIceCube Neutrino Observatoryneutrino astronomyneutrino experiments0103 physical sciencessiteAstrophysics::Galaxy Astrophysicsastro-ph.HEPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)densityneutrino astronomy; neutrino detectors; neutrino experiments010308 nuclear & particles physicsAstrophysics::Instrumentation and Methods for AstrophysicsAstronomy and Astrophysicsflux [neutrino]redshiftRedshift surveyGalaxyRedshiftobservatoryNeutrino detectorPhysics and Astronomymultiplet13. Climate actioncorrelationPhysique des particules élémentairesIntergalactic travelHigh Energy Physics::ExperimentgalaxyNeutrinoNeutrino astronomyAstrophysics - High Energy Astrophysical Phenomenaneutrino detectors
researchProduct

Neutrinos below 100 TeV from the southern sky employing refined veto techniques to IceCube data

2020

Many Galactic sources of gamma rays, such as supernova remnants, are expected to produce neutrinos with a typical energy cutoff well below 100 TeV. For the IceCube Neutrino Observatory located at the South Pole, the southern sky, containing the inner part of the Galactic plane and the Galactic Center, is a particularly challenging region at these energies, because of the large background of atmospheric muons. In this paper, we present recent advancements in data selection strategies for track-like muon neutrino events with energies below 100 TeV from the southern sky. The strategies utilize the outer detector regions as veto and features of the signal pattern to reduce the background of atm…

background [atmosphere]Physics::Instrumentation and Detectorsmedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenapoleFOS: Physical sciences01 natural sciencesHigh Energy Physics - ExperimentIceCube Neutrino ObservatoryIceCubecharged currentHigh Energy Physics - Experiment (hep-ex)Neutrinos; Point sources; Veto techniquesSEARCHTRACK RECONSTRUCTION0103 physical sciencessupernovaMuon neutrinoatmosphere [muon]Neutrinos010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysicsmedia_commonHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicsneutrino muonMuon010308 nuclear & particles physicsICEGalactic CenterHigh Energy Physics::PhenomenologyVeto techniquesAstronomyPoint sourcesAstronomy and Astrophysicsflux [neutrino]Galactic planeobservatorySupernovaPhysics and AstronomySkyenergy [neutrino]gamma rayddc:540spectralHigh Energy Physics::ExperimentgalaxyNeutrinoAstrophysics - High Energy Astrophysical Phenomena
researchProduct

IceCube Search for High-Energy Neutrino Emission from TeV Pulsar Wind Nebulae

2020

Pulsar wind nebulae (PWNe) are the main gamma-ray emitters in the Galactic plane. They are diffuse nebulae that emit nonthermal radiation. Pulsar winds, relativistic magnetized outflows from the central star, shocked in the ambient medium produce a multiwavelength emission from the radio through gamma-rays. Although the leptonic scenario is able to explain most PWNe emission, a hadronic contribution cannot be excluded. A possible hadronic contribution to the high-energy gamma-ray emission inevitably leads to the production of neutrinos. Using 9.5 yr of all-sky IceCube data, we report results from a stacking analysis to search for neutrino emission from 35 PWNe that are high-energy gamma-ray…

010504 meteorology & atmospheric sciencesHigh-energy astronomyAstrophysics::High Energy Astrophysical PhenomenaNeutrino astronomy; High energy astrophysicsFOS: Physical sciencesCosmic rayAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciences7. Clean energyPulsar0103 physical sciences010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HEAstronomy and AstrophysicsGalactic planeCOSMIC-RAYSCRAB-NEBULACrab NebulaPhysics and AstronomyNeutrino astronomy13. Climate actionSpace and Planetary ScienceGALACTIC SOURCESDISCOVERYPhysique des particules élémentairesHigh Energy Physics::ExperimentNeutrinoNeutrino astronomyAstrophysics - High Energy Astrophysical PhenomenaHigh energy astrophysicsGAMMA-RAY EMISSIONLepton
researchProduct

Constraints on Minute-Scale Transient Astrophysical Neutrino Sources

2019

High-energy neutrino emission has been predicted for several short-lived astrophysical transients including gamma-ray bursts (GRBs), core-collapse supernovae with choked jets, and neutron star mergers. IceCube's optical and x-ray follow-up program searches for such transient sources by looking for two or more muon neutrino candidates in directional coincidence and arriving within 100 s. The measured rate of neutrino alerts is consistent with the expected rate of chance coincidences of atmospheric background events and no likely electromagnetic counterparts have been identified in Swift follow-up observations. Here, we calculate generic bounds on the neutrino flux of short-lived transient so…

HIGH-ENERGY NEUTRINOSAstrophysics::High Energy Astrophysical PhenomenaPopulationGeneral Physics and AstronomyFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciences7. Clean energy0103 physical sciencesMuon neutrinoddc:530education010303 astronomy & astrophysicsPhysicsGAMMA-RAY BURSTSHigh Energy Astrophysical Phenomena (astro-ph.HE)education.field_of_studyMuon010308 nuclear & particles physicsSupernovaNeutron starPhysics and Astronomy13. Climate actionPhysique des particules élémentairesHigh Energy Physics::ExperimentNeutrinoGamma-ray burstAstrophysics - High Energy Astrophysical PhenomenaEnergy (signal processing)
researchProduct

Observation of the suppressed ADS modes B±→[π±K∓π+π−]DK± and B±→[π±K∓π+π−]Dπ±

2013

An analysis of and B-+/- -> DK +/- and B-+/- -> D pi(+/-) decays is presented where the D meson is reconstructed in the four-body final state K-+/-pi(-/+)pi(+)pi(-). Using LHCb data corresponding to an integrated luminosity of 1.0 fb(-1), first observations are made of the suppressed ADS modes B-+/- ->[pi K-+/-(-/+)pi(+)pi(-)](D)K-+/- and B +/- -> [pi K-+/-(-/+)pi(+)pi(-)](D)pi(+/-) with a significance of 5.1 sigma and greater than 10 sigma, respectively. Measurements of CP asymmetries and CP-conserving ratios of partial widths from this family of decays are also performed. The magnitude of the ratio between the suppressed and favoured B-+/- -> DK +/- amplitudes is determined to be r(B)(K) …

Nuclear physicsPhysicsNuclear and High Energy Physics010308 nuclear & particles physics0103 physical sciencesD mesonPiAnalytical chemistryCP violation010306 general physics01 natural sciencesPhysics Letters B
researchProduct

Measurement of the effective Bs0→K+K− lifetime

2012

A precise determination of the effective $B_s^0 \rightarrow K^+ K^-$ lifetime can be used to constrain contributions from physics beyond the Standard Model in the $B_s^0$ meson system. Conventional approaches select $B$ meson decay products that are significantly displaced from the $B$ meson production vertex. As a consequence, $B$ mesons with low decay times are suppressed, introducing a bias to the decay time spectrum which must be corrected. This analysis uses a technique that explicitly avoids a lifetime bias by using a neural network based trigger and event selection. Using 1.0 fb$^{-1}$ of data recorded by the LHCb experiment, the effective $B_s^0 \rightarrow K^+ K^-$ lifetime is meas…

PhysicsParticle physicsNuclear and High Energy PhysicsMeson productionMesonBranching fraction010308 nuclear & particles physicsPhysics beyond the Standard ModelHigh Energy Physics::Phenomenology01 natural sciencesLuminosityVertex (geometry)Nuclear physicsEvent selectionDecay time0103 physical sciencesCP violationHigh Energy Physics::Experiment010306 general physicsEnergy (signal processing)Physics Letters B
researchProduct

A Search for IceCube Events in the Direction of ANITA Neutrino Candidates

2020

During the first three flights of the Antarctic Impulsive Transient Antenna (ANITA) experiment, the collaboration detected several neutrino candidates. Two of these candidate events were consistent with an ultra-high-energy up-going air shower and compatible with a tau neutrino interpretation. A third neutrino candidate event was detected in a search for Askaryan radiation in the Antarctic ice, although it is also consistent with the background expectation. The inferred emergence angle of the first two events is in tension with IceCube and ANITA limits on isotropic cosmogenic neutrino fluxes. Here, we test the hypothesis that these events are astrophysical in origin, possibly caused by a po…

010504 meteorology & atmospheric sciencesPoint sourceAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics01 natural sciencesStandard ModelHigh Energy Physics - Phenomenology (hep-ph)Tau neutrino0103 physical sciencesTRACK RECONSTRUCTIONSource spectrum010303 astronomy & astrophysics0105 earth and related environmental sciencesPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HEIsotropyAstrophysics::Instrumentation and Methods for AstrophysicsAstronomy and Astrophysicshep-phHigh Energy Physics - PhenomenologyAir showerPhysics and Astronomy13. Climate actionSpace and Planetary ScienceNeutrinoAstrophysics - High Energy Astrophysical PhenomenaEvent (particle physics)
researchProduct

IceCube search for neutrinos coincident with compact binary mergers from LIGO-Virgo's first gravitational-wave transient catalog

2020

Using the IceCube Neutrino Observatory, we search for high-energy neutrino emission coincident with compact binary mergers observed by the LIGO and Virgo gravitational-wave (GW) detectors during their first and second observing runs. We present results from two searches targeting emission coincident with the sky localization of each GW event within a 1000 s time window centered around the reported merger time. One search uses a model-independent unbinned maximum-likelihood analysis, which uses neutrino data from IceCube to search for pointlike neutrino sources consistent with the sky localization of GW events. The other uses the Low-Latency Algorithm for Multi-messenger Astrophysics, which …

010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsBayesian7. Clean energy01 natural sciencesNeutrino astronomy; High energy astrophysics; Gravitational waveslocalizationIceCubeIceCube Neutrino ObservatoryGravitational wavesparticle source [neutrino]0103 physical sciencesLIGO010303 astronomy & astrophysics0105 earth and related environmental sciencesastro-ph.HEHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsGravitational wavegravitational radiationAstrophysics::Instrumentation and Methods for AstrophysicsAstronomy and AstrophysicsLIGOobservatorymessengerMassless particleVIRGONeutrino detector13. Climate actionSpace and Planetary ScienceNeutrino astronomycompact [binary]Physique des particules élémentairesddc:520High Energy Physics::ExperimentNeutrino astronomyNeutrinoAstrophysics - High Energy Astrophysical PhenomenaHigh energy astrophysicsLepton
researchProduct

Differential branching fraction and angular analysis of the decay $B^{0} \to K^{*0} \mu^{+}\mu^{-}$

2013

The angular distribution and differential branching fraction of the decay B-0 -> K*(0)mu(+)mu(-) are studied using a data sample, collected by the LHCb experiment in pp collisions at root s = 7 TeV, corresponding to an integrated luminosity of 1.0 fb(-1). Several angular observables are measured in bins of the dimuon invariant mass squared, q(2). A first measurement of the zero-crossing point of the forward-backward asymmetry of the dimuon system is also presented. The zero-crossing point is measured to be q(0)(2) = 4.9 +/- 0.9 GeV2/c(4), where the uncertainty is the sum of statistical and systematic uncertainties. The results are consistent with the Standard Model predictions.

K-ASTERISK-L(+)L(-)12.15.Mm01 natural sciencesB physicsLuminositydecayHigh Energy Physics - ExperimentSettore FIS/04 - Fisica Nucleare e SubnucleareNeutral currentFlavor physics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Invariant massQCDetectors de radiaciómedia_commonPhysicsB0 mesonHadron-induced high- and super-high-energy interactions (energy > 10 GeV): Inclusive production with identified hadronObservableCP violationFIS/01 - FISICA SPERIMENTALENuclear countersLeptonic semileptonic and radiative decays of bottom mesonsFísica nuclearLHCB physics; Flavor physics; Flavour Changing Neutral Currents; Hadron-Hadron Scattering; Rare decayParticle Physics - ExperimentParticle physicsNuclear and High Energy Physicsmedia_common.quotation_subject14.40.NdFlavour Changing Neutral CurrentsHadronsAsymmetryPartícules (Física nuclear)Standard ModelB physics; Flavor physics; Flavour Changing Neutral Currents; Hadron-Hadron Scattering; Rare decay; Nuclear and High Energy PhysicsNeutral currentsAngular distributionASYMMETRIES0103 physical sciencesLeptonic semileptonic and radiative decays of bottom mesonLHC flavour physics010306 general physicsHadron-induced high- and super-high-energy interactions (energy > 10 GeV): Inclusive production with identified hadronsB0 meson; decay; LHCb; LHCHadron-Hadron Scattering010308 nuclear & particles physicsBranching fractionCromodinàmica quànticaLHCbRare decay13.20.HeBottom mesons (|B|>0); Leptonic semileptonic and radiative decays of bottom mesons; Hadron-induced high- and super-high-energy interactions (energy > 10 GeV): Inclusive production with identified hadrons; Neutral currents; 14.40.Nd; 13.20.He; 13.85.Ni; 12.15.Mm;Bottom mesons (|B|>0)High Energy Physics::Experiment13.85.NiDifferential (mathematics)FIS/04 - FISICA NUCLEARE E SUBNUCLEAREQuantum chromodynamicsexperimental results
researchProduct

Characteristics of the diffuse astrophysical electron and Tau neutrino flux with six years of IceCube high energy cascade data

2020

We report on the first measurement of the astrophysical neutrino flux using particle showers (cascades) in IceCube data from 2010-2015. Assuming standard oscillations, the astrophysical neutrinos in this dedicated cascade sample are dominated (∼90%) by electron and tau flavors. The flux, observed in the sensitive energy range from 16 TeV to 2.6 PeV, is consistent with a single power-law model as expected from Fermi-type acceleration of high energy particles at astrophysical sources. We find the flux spectral index to be γ=2.53±0.07 and a flux normalization for each neutrino flavor of φastro=1.66-0.27+0.25 at E0=100 TeV, in agreement with IceCube's complementary muon neutrino results and wit…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGeneral Physics and AstronomyElectronpower spectrumflux [electron]energy [particle]01 natural sciencesIceCubeNuclear physics5/3Tau neutrinomuon0103 physical scienceslow [energy]Muon neutrinoddc:530010303 astronomy & astrophysicsastro-ph.HEHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsSPECTRUMSpectral indexMuon010308 nuclear & particles physicsHigh Energy Physics::Phenomenologyflavor [neutrino]RAYSflux [neutrino]accelerationshowersoscillationPhysics and Astronomy13. Climate actionEnergy cascadePhysique des particules élémentairesastro-ph.COhigh [energy]cascade [energy]High Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical PhenomenaFermi Gamma-ray Space TelescopeAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Combined sensitivity to the neutrino mass ordering with JUNO, the IceCube Upgrade, and PINGU

2020

Physical review / D 101(3), 032006 (1-19) (2020). doi:10.1103/PhysRevD.101.032006

Physics - Instrumentation and DetectorsPhysics::Instrumentation and Detectorsantineutrino/e: energy spectrumJoint analysishiukkasfysiikka7. Clean energy01 natural sciencesString (physics)PINGUHigh Energy Physics - ExperimentSubatomär fysikHigh Energy Physics - Experiment (hep-ex)neutrino: atmosphereSubatomic Physics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Particle Physics Experimentsneutrino: massphysics.ins-detPhysicsJUNOPhysicsneutriinotoscillation [neutrino]Instrumentation and Detectors (physics.ins-det)massa (fysiikka)atmosphere [neutrino]tensionneutrino: nuclear reactormass difference [neutrino]ddc:UpgradePhysique des particules élémentairesnuclear reactor [neutrino]proposed experimentNeutrinoperformanceParticle physicsAstrophysics::High Energy Astrophysical Phenomenaneutrino: mass differenceFOS: Physical sciencesddc:500.25300103 physical sciencesEnergy spectrumIceCube: upgradeOSCILLATIONSddc:530Sensitivity (control systems)[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsNeutrino oscillationenergy spectrum [antineutrino/e]hep-ex010308 nuclear & particles physicssensitivityPhysics and Astronomymass [neutrino]stringupgrade [IceCube]High Energy Physics::ExperimentReactor neutrinoneutrino: oscillationMATTER
researchProduct

Searches for violation of lepton flavour and baryon number in tau lepton decays at LHCb

2013

Searches for the lepton flavour violating decay tau(-) -> mu(-)mu(+)mu(-) and the lepton flavour and baryon number violating decays tau(-) -> (p) over bar mu(+)mu(-) and tau(-) -> p mu(-)mu(-) have been carried out using proton-proton collision data, corresponding to an integrated luminosity of 1.0 fb(-1), taken by the LHCb experiment at root s = 7 TeV. No evidence has been found for any signal, and limits have been set at 90% confidence level on the branching fractions: B(tau(-) -> mu(-)mu(+)mu(-) mu(+)mu(-)) p mu(-)mu(-)) (p) over bar mu(+)mu(-) and tau(-) -> p mu(-)mu(-) decay modes represent the first direct experimental limits on these channels.

Nuclear and High Energy PhysicsParticle physicsFlavourDecays of leptons; Global symmetries (e.g. baryon number lepton number); 13.35.-r; 11.30.Fs;FOS: Physical sciences01 natural sciencesPartícules (Física nuclear)High Energy Physics - ExperimentSettore FIS/04 - Fisica Nucleare e SubnucleareNuclear physicslepton number)High Energy Physics - Experiment (hep-ex)Violació CP (Física nuclear)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]LHC flavour physics lepton number11.30.FsNeutrinsNeutrinos010306 general physicsParticles (Nuclear physics)Physics13.35.-rDecays of leptonsLarge Hadron Collider010308 nuclear & particles physicsGlobal symmetries (e.g. baryon number lepton number)Leptons (Física nuclear)Global symmetries (e.g.High Energy Physics::Phenomenologybaryon numberDecays of lepton3. Good healthFIS/01 - FISICA SPERIMENTALELeptons (Nuclear physics)Física nuclearHigh Energy Physics::ExperimentBaryon numberNeutrino11.30.FFIS/04 - FISICA NUCLEARE E SUBNUCLEAREParticle Physics - ExperimentLeptonCP violation (Nuclear physics)Physics Letters B
researchProduct