0000000000772608

AUTHOR

Catherine Le Jossic-corcos

showing 8 related works from this author

Regulation of Farnesyl Diphosphate Synthase Gene Expression by Fatty Acids

2003

Cholesterol biosynthesis depends on the activity of regulatory enzymes, including the peroxisomal Farnesyl Diphosphate Synthase (FPPS ). Cholesterol regulates its own synthesis rate. Hence, as a response to cholesterol depletion, a feed back mechanism is activated, whereby sterol regulatory binding proteins (SREBPla, 1c and 2 ) are subjected to sequential proteolytic activation, which permits their interaction with specific DNA response elements from responsive genes. In turn, the transcriptional activity of cholesterol biosynthesis genes is induced. Conversely, cholesterol accumulation decreases SREBP maturation and transcription of controlled genes. In addition, polyunsaturated fatty acid…

chemistry.chemical_classificationbiologyCholesterolPeroxisomeSterolSterol regulatory element-binding proteinchemistry.chemical_compoundFarnesyl diphosphate synthasechemistryBiochemistryLipogenesisbiology.proteinlipids (amino acids peptides and proteins)GenePolyunsaturated fatty acid
researchProduct

Functional characterization of a peroxisome proliferator response-element located in the intron 3 of rat peroxisomal thiolase B gene.

2003

Expression of the rat peroxisomal 3-ketoacyl-CoA thiolase gene B is induced by peroxisome proliferators. Although a sequence element like a peroxisome proliferator-activated receptor (PPAR)-binding site is located in the promoter region of this gene, we previously found that this element is competent for the activation by hepatocyte nuclear factor-4, but not functional with PPARalpha. We describe here a new peroxisome proliferator-response element located in the intron 3 (+1422/+1434) that binds in vitro the PPARalpha/retinoid X receptor alpha heterodimer and confers the induction by PPARalpha in transfection assays. We propose a model of regulation of the rat thiolase B gene involving thos…

Peroxisome proliferator-activated receptor gammaResponse elementBiophysicsPeroxisome proliferator-activated receptorReceptors Cytoplasmic and NuclearRetinoid X receptorBiochemistryGene Expression Regulation EnzymologicStructure-Activity RelationshipPeroxisomesAnimalsAcetyl-CoA C-AcetyltransferaseMolecular BiologyCells Culturedchemistry.chemical_classificationThiolaseChemistryCell BiologyPhosphoproteinsMolecular biologyIntronsRatsDNA-Binding ProteinsBiochemistryHepatocyte Nuclear Factor 4LiverPeroxisome proliferator-activated receptor deltaPeroxisome ProliferatorsPeroxisome proliferator-activated receptor alphaPPARGC1BTranscription FactorsBiochemical and biophysical research communications
researchProduct

Peroxisome proliferator-activated receptor α (PPARα) activators induce hepatic farnesyl diphosphate synthase gene expression in rodents

2004

Fibrates are hypolipidemic drugs that exert multiple effects on lipid metabolism by activating peroxisome proliferator-activated receptor alpha (PPARalpha) and modulating the expression of many target genes. In order to investigate the link between PPARalpha and cholesterol synthesis, we analysed the effect of fibrates on expression of the farnesyl diphosphate synthase (FPP synthase) gene, known to be regulated by sterol regulatory element-binding proteins (SREBPs), in conjunction with HMG-CoA reductase. In wild-type mice, both fenofibrate and WY 14,643 induced FPP synthase gene expression, an effect impaired in PPARalpha-null mice. A three-fold induction was observed in ciprofibrate-treate…

Male[SDV]Life Sciences [q-bio]Endocrinology Diabetes and MetabolismClinical BiochemistryReceptors Cytoplasmic and NuclearPeroxisome proliferator-activated receptorCycloheximideBiochemistryGene Expression Regulation EnzymologicMice03 medical and health scienceschemistry.chemical_compoundEndocrinologyFarnesyl diphosphate synthaseGene expressionmedicineAnimalsReceptorMolecular BiologyComputingMilieux_MISCELLANEOUS030304 developmental biologyMice Knockoutchemistry.chemical_classification0303 health sciencesAlkyl and Aryl Transferasesbiology030302 biochemistry & molecular biologyGeranyltranstransferaseLipid metabolismCell BiologyPeroxisomeBlotting Northern3. Good healthCell biologyLiverchemistryBiochemistrybiology.proteinMolecular Medicinelipids (amino acids peptides and proteins)CiprofibrateTranscription Factorsmedicine.drugThe Journal of Steroid Biochemistry and Molecular Biology
researchProduct

Effects of peroxisome proliferator-activated receptor alpha activation on pathways contributing to cholesterol homeostasis in rat hepatocytes

2004

International audience; Peroxisome proliferator-activated receptor alpha (PPARa) activation by fibrates controls expression of several genes involved in hepatic cholesterol metabolism. Other genes could be indirectly controlled in response to changes in cellular cholesterol availability. To further understand how fibrates may affect cholesterol synthesis, we investigated in parallel the changes in the metabolic pathways contributing to cholesterol homeostasis in liver. Ciprofibrate increased HMG-CoA reductase and FPP synthase mRNA levels in rat hepatocytes, together with cholesterogenesis from [14C] acetate and [3H] mevalonate. The up-regulation observed in fenofibrate- and WY-14,643-treate…

MaleCarboxy-Lyases[SDV]Life Sciences [q-bio]Receptors Cytoplasmic and NuclearAcetatesClofibric AcidMicechemistry.chemical_compound0302 clinical medicineMice KnockoutCarbon Isotopes0303 health sciencesFenofibrateFibric AcidsPeroxisomeUp-RegulationHMG-COA REDUCTASEDNA-Binding ProteinsCholesterolCHOLESTEROL METABOLISM030220 oncology & carcinogenesisHMG-CoA reductaseCholesteryl esterPeroxisome Proliferatorslipids (amino acids peptides and proteins)Peroxisome proliferator-activated receptor alphaSterol Regulatory Element Binding Protein 1Cell DivisionSignal Transductionmedicine.drugmedicine.medical_specialtyMevalonic AcidPeroxisome ProliferationBiologyCholesterol 7 alpha-hydroxylaseBile Acids and Salts03 medical and health sciencesInternal medicinemedicineAnimalsRNA MessengerMolecular Biology030304 developmental biologyCell BiologyRAT HEPATOCYTEPPARA-NULL MOUSERatsSterol regulatory element-binding proteinMice Inbred C57BLPyrimidinesEndocrinologychemistryFIBRATECCAAT-Enhancer-Binding ProteinsHepatocytesbiology.proteinHydroxymethylglutaryl CoA ReductasesTranscription Factors
researchProduct

Gene Regulation of Peroxisomal Enzymes by Nutrients, Hormones and Nuclear Signalling Factors in Animal and Human Species

2003

Many peroxisomal enzymes are controlled at the transcriptional level. This gene regulation is well documented in liver from rodent species and is more important upon peroxisome proliferation, although both phenomena are not always associated. Understanding of this regulation comes largely from studies on PPARs (Peroxisome Proliferator-Activated Receptors). Other transcription factors including thyroid hormone receptors, glucocorticoid receptors, LXR, also influence peroxisomal gene expression often in combination with tissue specific cofactors (co-activators or co-repressors). In human tissues and cells, inducibility of peroxisomal enzymes often has not been investigated. De Craemer (1995) …

Regulation of gene expressionPristanic acidchemistry.chemical_compoundchemistryBiochemistryPeroxisome ProliferationPeroxisomeBiologyReceptorLiver X receptorTranscription factorPPAR agonist
researchProduct

Hepatic farnesyl diphosphate synthase expression is suppressed by polyunsaturated fatty acids

2005

Dietary vegetable oils and fish oils rich in PUFA (polyunsaturated fatty acids) exert hypocholesterolaemic and hypotriglyceridaemic effects in rodents. The plasma cholesterol-lowering properties of PUFA are due partly to a diminution of cholesterol synthesis and of the activity of the rate-limiting enzyme HMG-CoA reductase (3-hydroxy-3-methylglutaryl-CoA reductase). To better understand the mechanisms involved, we examined how tuna fish oil and individual n−3 and n−6 PUFA affect the expression of hepatic FPP synthase (farnesyl diphosphate synthase), a SREBP (sterol regulatory element-binding protein) target enzyme that is subject to negative-feedback regulation by sterols, in co-ordination …

RNA StabilityBlotting WesternDown-RegulationReductaseBiochemistryGene Expression Regulation EnzymologicMicechemistry.chemical_compoundFish OilsFarnesyl diphosphate synthaseCell Line TumorAnimalsHumansRNA MessengerPromoter Regions GeneticMolecular BiologyTriglyceridesCell Nucleuschemistry.chemical_classificationAlkyl and Aryl TransferasesbiologyTunaCholesterolalpha-Linolenic acidalpha-Linolenic Acidfood and beveragesGeranyltranstransferaseCell BiologyHydroxymethylglutaryl-CoA reductaseEicosapentaenoic acidDietRatsDNA-Binding ProteinsCholesterolLiverchemistryBiochemistryDocosahexaenoic acidCCAAT-Enhancer-Binding ProteinsFatty Acids Unsaturatedbiology.proteinHydroxymethylglutaryl CoA Reductaseslipids (amino acids peptides and proteins)Sterol Regulatory Element Binding Protein 1Sterol Regulatory Element Binding Protein 2Transcription FactorsResearch ArticlePolyunsaturated fatty acidBiochemical Journal
researchProduct

2004

β-oxidation of long and very long chain fatty acyl-CoA derivatives occurs in peroxisomes, which are ubiquitous subcellular organelles of eukaryotic cells. This pathway releases acetyl-CoA as precursor for several key molecules such as cholesterol. Numerous enzymes participating to cholesterol and fatty acids biosynthesis pathways are co-localized in peroxisomes and some of their encoding genes are known as targets of the NFY transcriptional regulator. However, until now no interaction between NFY transcription factor and genes encoding peroxisomal β-oxidation has been reported. This work studied the interactions between NFY factor with the rat gene promoters of two enzymes of the fatty acid…

chemistry.chemical_classificationThiolaseEndocrinology Diabetes and MetabolismBiochemistry (medical)Clinical BiochemistryFatty acidPromoterBiologyPeroxisomeEndocrinologychemistryBiochemistryTranscriptional regulationElectrophoretic mobility shift assayGeneTranscription factorLipids in Health and Disease
researchProduct

NFY interacts with the promoter region of two genes involved in the rat peroxisomal fatty acid β-oxidation: the multifunctional protein type 1 and th…

2004

Abstract Background β-oxidation of long and very long chain fatty acyl-CoA derivatives occurs in peroxisomes, which are ubiquitous subcellular organelles of eukaryotic cells. This pathway releases acetyl-CoA as precursor for several key molecules such as cholesterol. Numerous enzymes participating to cholesterol and fatty acids biosynthesis pathways are co-localized in peroxisomes and some of their encoding genes are known as targets of the NFY transcriptional regulator. However, until now no interaction between NFY transcription factor and genes encoding peroxisomal β-oxidation has been reported. Results This work studied the interactions between NFY factor with the rat gene promoters of t…

lcsh:Nutritional diseases. Deficiency diseasesResearchlcsh:RC620-627Lipids in Health and Disease
researchProduct