0000000000773762

AUTHOR

Mohammed El Khalifi

Electronic and optical properties of CeO 2 from first principles calculations

International audience; First-principles calculations of the electronic structure of CeO2 nanoparticles (NPs) were performed to investigate published experimental data obtained by different spectroscopies. The main features of the valence and conduction bands have been analyzed from the total and partial density of states. Several functionals were applied to interpret and quantify the optical properties, including the dielectric function, extinction coefficient and refractive index. It is found that the on-site hybrid functional B3PW91 modelled most suitably the band gap region of CeO2 NPs and consequently gave a more accurate band gap value. It also agreed very well with the experimental v…

research product

Theoretical demonstration of the potentiality of boron nitride nanotubes to encapsulate anticancer molecule.

Anticancer drug transport is now becoming an important scientific challenge since it would allow localizing the drug release near the tumor cell, avoiding secondary medical effects. We present theoretical results, based on density functional theory and molecular dynamics simulations, which demonstrate the stability of functionalized single (10,10) boron nitride nanotubes (BNNTs) filled with anticancer molecule such as carboplatin (CPT). For this functionalized system we determine the dependence of the adsorption energy on the molecule displacement near the inner BNNTs surface, together with their local morphological and electrical changes and compare the values to the adsorption energy obta…

research product