0000000000774730

AUTHOR

B. Salce

showing 2 related works from this author

Long-transient conoscopic pattern technique

1999

0038-1098; Recent results on laser induced anisotropy in terbium gallium garnet are extended to the dynamic regime. We observed that the characteristic conoscopic pattern formation time presents a quadratic dependence on the beam size. The observed pattern intensity is accounted for by a simple analytical formula. The transient refractive index change due to thermal stress in the terbium gallium garnet is determined. (C) 1999 Elsevier Science Ltd. All rights reserved.

optical propertiesheat capacityPhysics::OpticsPattern formation02 engineering and technologyTERBIUM-GALLIUM GARNET01 natural sciencesTerbium gallium garnetlaw.invention010309 opticsCondensed Matter::Materials Sciencechemistry.chemical_compoundOpticslaw0103 physical sciencesMaterials ChemistryBirefringenceCondensed matter physicsbusiness.industrynonlinear opticsNonlinear opticsGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsLaserIntensity (physics)chemistryTransient (oscillation)0210 nano-technologybusinessRefractive index
researchProduct

Polaronic relaxation in perovskites

1995

We report a low-temperature loss anomaly in several oxidic perovskites such as ${\mathrm{KTaO}}_{3}$, ${\mathrm{KTaO}}_{3}$:Nb, ${\mathrm{SrTiO}}_{3}$, ${\mathrm{SrTiO}}_{3}$:Ca, ${\mathrm{PbTiO}}_{3}$:La, Cu, and ${\mathrm{BaTiO}}_{3}$:La. We show that this anomaly arises from a low-frequency dielectric relaxation. The activation energy and the relaxation time of this process are nearly the same for all the investigated perovskites disregarding their composition, texture, and ferroelectric properties. We thus ascribe the loss anomaly to the localization of polarons on residual defects. Although the dielectric losses in ${\mathrm{SrTiO}}_{3}$ and ${\mathrm{SrTiO}}_{3}$:Ca are qualitatively …

Condensed Matter::Materials ScienceMaterials scienceCondensed matter physicsCondensed Matter::SuperconductivityRelaxation (NMR)Dielectric lossDielectricTexture (crystalline)Activation energyAnomaly (physics)PolaronFerroelectricityPhysical Review B
researchProduct