Performance of a Predictive Model for Long-Term Hemoglobin Response to Darbepoetin and Iron Administration in a Large Cohort of Hemodialysis Patients
International audience; Anemia management, based on erythropoiesis stimulating agents (ESA) and iron supplementation, has become an increasingly challenging problem in hemodialysis patients. Maintaining hemodialysis patients within narrow hemoglobin targets, preventing cycling outside target, and reducing ESA dosing to prevent adverse outcomes requires considerable attention from caregivers. Anticipation of the long-term response (i.e. at 3 months) to the ESA/iron therapy would be of fundamental importance for planning a successful treatment strategy. To this end, we developed a predictive model designed to support decision-making regarding anemia management in hemodialysis (HD) patients tr…
How to assess the risks associated with the usage of a medical device based on predictive modeling: the case of an anemia control model certified as medical device.
Background The successful application of Machine Learning (ML) to many clinical problems can lead to its implementation as medical devices (MD), being important to assess the associated risks. Methods An anemia control model (ACM), certified as MD may face adverse events as the result of wrong predictions that are translated into suggestions of doses of erythropoietic stimulating agents to dialysis patients. Risks are assessed as the combination of severity and probability of a given hazard. While severities are typically assessed by clinicians, probabilities are tightly related to the performance of the predictive model. Results A post-marketing dataset formed by all adult patients registe…