0000000000776660

AUTHOR

Harald Hutter

Tetraspan vesicle membrane proteins: Synthesis, subcellular localization, and functional properties

Tetraspan vesicle membrane proteins (TVPs) are characterized by four transmembrane regions and cytoplasmically located end domains. They are ubiquitous and abundant components of vesicles in most, if not all, cells of multicellular organisms. TVP-containing vesicles shuttle between various membranous compartments and are localized in biosynthetic and endocytotic pathways. Based on gene organization and amino acid sequence similarities TVPs can be grouped into three distinct families that are referred to as physins, gyrins, and secretory carrier-associated membrane proteins (SCAMPs). In mammals synaptophysin, synaptoporin, pantophysin, and mitsugumin29 constitute the physins, synaptogyrin 1-…

research product

Synaptic tetraspan vesicle membrane proteins are conserved but not needed for synaptogenesis and neuronal function in Caenorhabditis elegans

Tetraspan vesicle membrane proteins (TVPs) comprise a major portion of synaptic vesicle proteins, yet their contribution to the synaptic vesicle cycle is poorly understood. TVPs are grouped in three mammalian gene families: physins, gyrins, and secretory carrier-associated membrane proteins (SCAMPs). In Caenorhabditis elegans , only a single member of each of these families exists. These three nematode TVPs colocalize to the same vesicular compartment when expressed in mammalian cells, suggesting that they could serve overlapping functions. To examine their function, C. elegans null mutants were isolated for each gene, and a triple mutant was generated. Surprisingly, these animals develop …

research product