0000000000777794

AUTHOR

Dorsa Komijani

showing 2 related works from this author

Enhancing coherence in molecular spin qubits via atomic clock transitions

2016

Quantum computing is an emerging area within the information sciences revolving around the concept of quantum bits (qubits). A major obstacle is the extreme fragility of these qubits due to interactions with their environment that destroy their quantumness. This phenomenon, known as decoherence, is of fundamental interest1,2. There are many competing candidates for qubits, including superconducting circuits3, quantum optical cavities4, ultracold atoms5 and spin qubits6,7,8, and each has its strengths and weaknesses. When dealing with spin qubits, the strongest source of decoherence is the magnetic dipolar interaction9. To minimize it, spins are typically diluted in a diamagnetic matrix. For…

PhysicsMultidisciplinaryCondensed matter physicsCluster stateUNESCO::QUÍMICASpin engineeringQuantum Physics02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences:QUÍMICA [UNESCO]0104 chemical sciencesQuantum error correctionQuantum mechanicsQuantum informationW state0210 nano-technologySuperconducting quantum computingQuantum dissipationQuantum computer
researchProduct

Electron-nuclear decoupling at a spin clock transition

2023

The ability to design quantum systems that decouple from environmental noise sources is highly desirable for development of quantum technologies with optimal coherence. The chemical tunability of electronic states in magnetic molecules combined with advanced electron spin resonance techniques provides excellent opportunities to address this problem. Indeed, so-called clock transitions have been shown to protect molecular spin qubits from magnetic noise, giving rise to significantly enhanced coherence. Here we conduct a spectroscopic and computational investigation of this physics, focusing on the role of the nuclear bath. Away from the clock transition, linear coupling to the nuclear degree…

MagLabMolecular magnetMolecular spin qubitLanthanideUNESCO::QUÍMICAGeneral Physics and AstronomyEPRClock transitionNHMFLCommunications Physics
researchProduct