0000000000780398

AUTHOR

M. C. Marco De Lucas

Improving the high temperature oxidation resistance of Ti-β21S by mechanical surface treatment

The improvement of the high temperature oxidation resistance of titanium alloys is currently a technological challenge. Mechanical surface treatments as shot-peening (SP) have shown their ability to improve the behaviour of pure zirconium and titanium. However, shot-peening treatments can induce a significant surface contamination. Laser shock peening (LSP) appears as a good alternative. Here, we have investigated the effect of SP and LSP treatments on the HT oxidation behavior of Ti-β21S. Samples treated by these methods have been compared to untreated ones for long exposures (3000 h) at 700 °C in dry air. The samples placed in a furnace at 700 °C were periodically extracted to be weighed.…

research product

Atomic Layer Deposition of Au-TiO2 inverse opals for the visible light photocatalysis of dyesdegradation

The pollution of waste water due to organic dyes used in the textile and chemical industries is an important environmental issue. Inverse opals (IO) offer a great potential for increasing the efficiency of their degradation by semiconductor photocatalysts such as TiO2 by the synergy of high specific surface and photonic crystal properties [1]. Doping TiO2 with gold nanoparticles is another possible strategy to enhance its photocatalytic activity by increasing its optical absorption in the visible range [2].This work reports the synthesis of Au-TiO 2 IO films by Atomic Layer Deposition and the study of their visible-light photocatalytic activity for the degradation of methylene blue in water…

research product

Structure and Chemical Bonds in Black Ti(C, N, O) Thin Films

research product