0000000000781150
AUTHOR
Franck Omnès
Solar blind detectors based on AlGaN grown on sapphire
Solar blind detectors have been fabricated based on AlGaN heterostructures grown on sapphire by molecular beam epitaxy or chemical vapour deposition. MSM and Schottky detectors were investigated. High performance devices have been obtained thanks to an optimization of the material crystalline quality (including the suppression of cracks) and of the process. We show that the spectral limitations of MSM detectors are dictated by intrinsic phenomena that are analysed in details while the responsivity and detectivity also depends on the technological process with a special emphasis on the geometry of finger and contact pads. One and two dimensional arrays have been fabricated and preliminary re…
Internal photoemission in solar blind AlGaN Schottky barrier photodiodes
We have analyzed the photoresponse of solar blind AlGaN Schottky barrier photodiodes below the alloy band gap energy, in the 3.5-4.5 eV range, and we show that it is dominated by internal photoemission. The n-type Schottky barrier height is shown to increase linearly with the band gap energy of the AlGaN alloy. The amplitude of the internal photoemission signal is about 20 times smaller than the value given by the Fowler theory based on a free electron model. We explain this result by taking into account the interband transitions and the ballistic transport of photoexcited electrons in the metal. This low value of internal photoemission allows us to achieve a spectral rejection ratio betwee…
Effects of the Buffer Layers on the Performances of (Al,Ga)N Ultraviolet Photodetectors
The fabrication of (Al,Ga)N-based metal–semiconductor–metal (MSM) photovoltaic detectors requires the growth of high-quality (Al,Ga)N films. Inserting a low-temperature deposited buffer layer enables the growth of an epitaxial layer with a reduced density of defects. Two structures using GaN and AlN buffer layers have been deposited by low-pressure metalorganic chemical vapor deposition and used to fabricate MSM interdigitated detectors. The devices have been characterized to investigate the effects of the buffer layers on the detector performances.
High Performance Solar Blind Detectors based on AlGaN grown by MBE and MOCVD
ABSTRACTSolar blind detectors based on AlGaN grown by Molecular Beam Epitaxy and Metal Organic Vapor Phase Epitaxy have been fabricated and characterized. Metal Semiconductor Metal (MSM) detectors and vertical Schottky detectors have been realized, with a design that allows back side illumination. The growth was optimized in order to improve the layer quality, avoid crack formation, and provide the best detector performance. The technological process was also optimized in order to reduce the dark currents and improve the spectral rejection ratio, which is a key factor for solar blind detection. As a result, a rejection ratio of 5 decades between the UV (below 300 nm) and 400 nm, and a steep…