Molecular Confinement in Femtoliter scale aqueous Compartments
Molecular confinement is known to lead to acceleration of molecular dynamics along with surface interaction. Nature employs confinement in molecularly crowded, heterogeneous and, specialized femtoliter (fL) compartments inside living cells for spontaneously achieving higher reaction efficiency and spatial-programming of composite, multi-step biochemical processes. We here show the facile production of aqueous fL droplets for studying molecular confinement on a biochip. We prepare fL aqueous droplets in oil drops on solid substrates by a “field-free”- no external electric fields and electrolytes - piezoelectric inkjet printing in which a novel actuating waveform is employed by picoliter size…