0000000000785063

AUTHOR

N. Lo Iudice

Electromagnetic properties of some positive parity dipole states described in terms of quadrupole and octupole interacting bosons

The first three positive parity dipole states predicted by a phenomenological quadrupole-octupole boson Hamiltonian are extensively studied. Their coupling to the neighboring positive and negative parity states, due to the {ital M}1 and {ital E}{lambda} ({lambda}=1,3) transitions, respectively, are considered. Special attention is paid to the lowest two states which are of collective {ital M}1 nature. The signature which distinguishes them from the {ital M}1 state describing the scissors mode is also discussed.

research product

Local suppression of collectivity in theN=80isotones at theZ=58subshell closure

) transition strengths [1] and thenumber of nucleons in the valence shell. The global behaviorof these quantities between the major shells as a function ofthe nucleon number is well understood in the frameworks ofboth collective and microscopic models. One could expect thatthese general trends in the collective properties between themajorshellsaremodulated bythesubshellstructure.However,it is usually thought that the pairing correlations with anenergy scale of about 2 MeV, smear out and dissolve thesubshell structure as long as the separation energies betweenthe subshells are only about a few hundred keV.The recently observed evolution of the isovectorquadrupole-collective valence-shell exc…

research product

Local suppression of collectivity in the N=80 isotones at the Z=58 subshell closure

Background: Recent data on N=80 isotones have suggested that the proton π(1g7/2) subshell closure at Z=58 has an impact on the properties of low-lying collective states. Purpose: Knowledge of the B(E2;2+1→0+1) value of 140Nd is needed in order to test this conjecture. Method: The unstable, neutron-rich nucleus 140Nd was investigated via projectile Coulomb excitation at the REX-ISOLDE facility with the MINIBALL spectrometer. Results: The B(E2) value of 33(2) W.u. expands the N=80 systematics beyond the Z=58 subshell closure. Conclusions: The measurement demonstrates that the reduced collectivity of 138Ce is a local effect possibly due to the Z=58 subshell closure and requests refined theoret…

research product