0000000000785066

AUTHOR

C. Stahl

showing 9 related works from this author

High-Statistics Sub-Barrier Coulomb Excitation of $^{106,108,110}$Sn

2020

International audience; A Coulomb excitation campaign on $^{106,108,110}$Sn at 4.4–4.5 MeV/u was launched at the HIE-ISOLDE facility at CERN. Larger excitation cross sections and γ-ray statistics were achieved compared to previous experiments at ∼2.8 MeV/u. More precise $(B(E2;0_{1}^{ + } \to 2_{1}^{ + }))$ values, lifetimes of states via the Doppler shift attenuation method, and new $(B(E2;0_{1}^{ + } \to 2_{x}^{ + })), (B(E2;2_{1}^{ + } \to 4_{1}^{ + }))$ and $(Q(2_{1}^{ + }))$ values from the new Miniball data will be obtained and applied to test modern nuclear structure theories.

Physics010308 nuclear & particles physicsCoulomb excitation0103 physical sciencesshell modelNuclear Physics - ExperimentCoulomb excitationAtomic physics[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]010306 general physics01 natural sciencesnuclear collectivity
researchProduct

Local suppression of collectivity in theN=80isotones at theZ=58subshell closure

2013

) transition strengths [1] and thenumber of nucleons in the valence shell. The global behaviorof these quantities between the major shells as a function ofthe nucleon number is well understood in the frameworks ofboth collective and microscopic models. One could expect thatthese general trends in the collective properties between themajorshellsaremodulated bythesubshellstructure.However,it is usually thought that the pairing correlations with anenergy scale of about 2 MeV, smear out and dissolve thesubshell structure as long as the separation energies betweenthe subshells are only about a few hundred keV.The recently observed evolution of the isovectorquadrupole-collective valence-shell exc…

Nuclear physicsMass numberPhysicsNuclear and High Energy PhysicsPairingNuclear TheoryPhysics::Atomic and Molecular ClustersClosure (topology)NucleonValence electronPhysical Review C
researchProduct

Lifetime measurement of neutron-rich even-even molybdenum isotopes

2017

D. Ralet et al. -- 11 pags., 10 figs., 3 tabs.

chemistry.chemical_element[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]7. Clean energy01 natural sciencesNuclear physicsSubatomic Physics0103 physical sciencesNeutronddc:530010306 general physicsMass numberPhysicsIsotope010308 nuclear & particles physicsrelativistic projectile fragmentation3. Good healthsecondary fragmentationgamma-ray spectroscopychemistryMolybdenumExcited stateQuadrupoleFísica nuclearAGATAAtomic physicsEnergy (signal processing)
researchProduct

The Miniball spectrometer

2013

The Miniball germanium detector array has been operational at the REX (Radioactive ion beam EXperiment) post accelerator at the Isotope Separator On-Line facility ISOLDE at CERN since 2001. During the last decade, a series of successful Coulomb excitation and transfer reaction studies have been performed with this array, utilizing the unique and high-quality radioactive ion beams which are available at ISOLDE. In this article, an overview is given of the technical details of the full Miniball setup, including a description of the γ-ray and particle detectors, beam monitoring devices and methods to deal with beam contamination. The specific timing properties of the REX-ISOLDE facility are hi…

Radioactive ion beamsNuclear and High Energy PhysicsIon beamREX-ISOLDEONLINECoulomb excitation[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesNuclear physicsSETUPCOULOMB-EXCITATION0103 physical sciencesNuclear fusionSILICON STRIP DETECTOR[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]RELATIVISTIC ENERGIES010306 general physicsNuclear ExperimentNEUTRON KNOCKOUTPhysicsNuclear Physics; Heavy Ions; Hadrons; Particle and Nuclear Physics; Nuclear FusionLarge Hadron ColliderSpectrometerNUCLEI010308 nuclear & particles physicsDetectorRADIOACTIVE ION-BEAMSemiconductor detectorPhysics::Accelerator PhysicsGE DETECTORS
researchProduct

Isospin dependence of electromagnetic transition strengths among an isobaric triplet

2019

*Aydın, Sezgin ( Aksaray, Yazar )

PhysicsNuclear and High Energy Physics010308 nuclear & particles physicsNuclear Theory[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural scienceslcsh:QC1-999Subatomär fysikMatrix (mathematics)Isospin0103 physical sciencesQuadrupoleSubatomic PhysicsIsobaric processElectromagnetic Transition StrengthsAtomic physics010306 general physicsydinfysiikkaMultipletIsospin Dependencelcsh:Physics
researchProduct

Study of isomeric states in $^{198,200,202,206}$Pb and $^{206}$Hg populated in fragmentation reactions

2018

International audience; Isomeric states in isotopes in the vicinity of doubly-magic 208Pb were populatedfollowing reactions of a relativistic 208Pb primary beam impinging on a9Be fragmentation target. Secondary beams of 198,200,202,206Pb and 206Hg wereisotopically separated and implanted in a passive stopper positioned in thefocal plane of the GSI Fragment Separator. Delayed γ rays were detected withthe Advanced Gamma Tracking Array (AGATA). Decay schemes were reevaluatedand interpreted with shell-model calculations. The momentumdependentpopulation of isomeric states in the two-nucleon hole nuclei206Pb/206Hg was found to differ from the population of multi neutron-holeisomeric states in 198…

Nuclear and High Energy Physicsisomeric decaysAstrophysics::High Energy Astrophysical PhenomenaPopulationNuclear Theory[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesFragmentation (mass spectrometry)Subatomic Physics0103 physical sciencesGamma spectroscopyGamma-ray spectroscopy010306 general physicseducationNuclear ExperimentPhysicseducation.field_of_studyIsotope010308 nuclear & particles physicsNuclear shell modeldirect reactionsrelativistic projectile fragmentationelectromagnetic transitionsnuclear shell modelAGATAPreSPEC-AGATAAtomic physicsBeam (structure)
researchProduct

AGATA-Advanced GAmma Tracking Array

2012

WOS: 000300864200005

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsPulse-shape and gamma-ray tracking algorithmsFOS: Physical sciencesSemiconductor detector performance and simulationsIntegrated circuit[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Tracking (particle physics)gamma-Ray tracking01 natural sciencesPulse-shape and γ-ray tracking algorithmslaw.inventionData acquisitionlaw0103 physical sciencesddc:530[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Nuclear Experiment (nucl-ex)010306 general physicsγ-Ray spectroscopyNuclear ExperimentInstrumentationDigital signal processingEvent reconstructiongamma-Ray spectroscopyPhysicssezeleSpectrometerSpectrometers010308 nuclear & particles physicsbusiness.industryDetectorAGATA Digital signals HPGe detectors Pulse-shape Ray trackingHPGe detectorsAlgorithms Crystals Germanium Semiconductor detectors Signal processing Spectrometry Tracking (position)γ-Ray trackingInstrumentation and Detectors (physics.ins-det)Digital signal processingAGATAFísica nuclearbusinessAGATAComputer hardware
researchProduct

Evolution of quadrupole collectivity in N=80 isotones toward the Z=64 subshell gap: The B(E2;2+1→0+1) value of 142Sm

2015

It was shown that the evolution of the B(E2; 2+ 1 → 0+ 1 ) values in N = 80 isotones from Te to Nd is affected by the underlying subshell structure. This manifests itself in the observation of the local suppression of the B(E2) value at Z = 58 with respect to the neighboring nuclei 136Ba and 140Nd. To investigate this shell sensitivity toward the Z = 64 subshell gap, the B(E2; 2+ 1 → 0+ 1 ) value of the unstable nucleus 142Sm was measured utilizing the projectile Coulomb excitation technique. The radioactive ion beam (RIB) experiment was performed at the REX-ISOLDE facility at CERN. The B(E2) value of 32 (4) W.u. reflects the impact of the π(1g7/2 2d5/2) subshell closure at Z = 64 with resp…

projectile Coulomb excitationsamarium
researchProduct

Local suppression of collectivity in the N=80 isotones at the Z=58 subshell closure

2013

Background: Recent data on N=80 isotones have suggested that the proton π(1g7/2) subshell closure at Z=58 has an impact on the properties of low-lying collective states. Purpose: Knowledge of the B(E2;2+1→0+1) value of 140Nd is needed in order to test this conjecture. Method: The unstable, neutron-rich nucleus 140Nd was investigated via projectile Coulomb excitation at the REX-ISOLDE facility with the MINIBALL spectrometer. Results: The B(E2) value of 33(2) W.u. expands the N=80 systematics beyond the Z=58 subshell closure. Conclusions: The measurement demonstrates that the reduced collectivity of 138Ce is a local effect possibly due to the Z=58 subshell closure and requests refined theoret…

Experimental Nuclear Physics
researchProduct