0000000000788904

AUTHOR

Giovanni Saggio

showing 4 related works from this author

Piezoresistive Sensors from Bithiophene-fulleropyrrolidine Bisadducts Thin-Films

The phenomenon of piezoresistivity in materials is based on the separation of conductive domains triggered by mechanical strains, resulting in a variation of the electrical resistance.1 This property is at the core of sensors for wearable electronics, e-skins, human motion detectors and machine learning devices.2 Fundamental requirements include lightness, good transparency, high flexibility and sensitivity to tiny deformations. However, the fabrication of a system integrating all these features is challenging. Herein, we show a semitransparent piezoresistive sensor realized by an electropolymerized bithiophene‐fulleropyrrolidine bisadduct onto ITO/PET3 (see Figure 1a). The good outcome of …

Fullerenepiezoresistivitysensors
researchProduct

Bending Sensors Based on Thin Films of Semitransparent Bithiophene-Fulleropyrrolidine Bisadducts

2020

In this study, a novel bithiophene‐fulleropyrrolidine bisadducts system (bis‐Th2PC 60 ) was synthesized and electropolymerized by chronoamperometry onto flexible ITO/PET substrates. The resulting semitransparent thin film was characterized by XPS, FT‐IR, cyclic voltammetry and optical techniques, confirming the good outcome of the electropolymerization process. AFM investigations permitted to highlight an inherent disordered granular morphology, in which the grain‐to‐grain separation depends upon the application of bending. The electrical resistance of the thin film was characterized as function of bending (in the range 0°‐90°), showing promising responsivity to low bending angles (10°‐30°)…

Materials scienceFullerenepiezoresistive sensors010405 organic chemistrySettore ING-INF/01General ChemistryBendingChronoamperometrybending010402 general chemistry01 natural sciencesPiezoresistive effect0104 chemical sciencesElectrical resistance and conductanceX-ray photoelectron spectroscopythin filmsthiophenesconjugated polymersCyclic voltammetryComposite materialThin filmBending conjugated polymers piezoresistive sensors thin films thiophenes
researchProduct

High-density ZnO Nanowires as a Reversible Myogenic-Differentiation-Switch

2018

Mesoangioblasts are outstanding candidates for stem-cell therapy and are already being explored in clinical trials. However, a crucial challenge in regenerative medicine is the limited availability of undifferentiated myogenic progenitor cells because growth is typically accompanied by differentiation. Here reversible myogenic-differentiation switching during proliferation is achieved by functionalizing the glass substrate with high-density ZnO nanowires (NWs). Specifically, mesoangioblasts grown on ZnO NWs present a spherical viable undifferentiated cell state without lamellopodia formation during the entire observation time (8 days). Consistently, the myosin heavy chain, typically express…

Myogenic differentiationMaterials scienceCellmuscle differentiation02 engineering and technologyMuscle Development010402 general chemistrySettore BIO/0901 natural sciencesRegenerative medicineZnO nanowireZnO nanowires; mesoangioblasts; muscle differentiation; tissue engineeringTissue engineeringmesoangioblastsMyosinmedicinemesoangioblastGeneral Materials ScienceProgenitor cellNanowiresZno nanowiresSubstrate (chemistry)Cell Differentiation021001 nanoscience & nanotechnology0104 chemical sciencesCell biologymedicine.anatomical_structuretissue engineeringZnO nanowiresZinc Oxide0210 nano-technology
researchProduct

Low angle bending detection semi-transparent piezoresistive sensor

2022

We designed, fabricated, and validated a piezoresistive bending sensor, a fundamental component of wearable electronic devices for monitoring human motion. The most diffused opaque carbon-based resistance flex sensors suffer from low detection for small bending angles. The sensor we here present is based on a semi-transparent active material (fulleropyrrolidine bisadducts polymer) and has the remarkable advantage of good electrical properties for low bending angles. The fabrication steps are effective since a pre-patterned ITO/PET surface is functionalized by chronoamperometric deposition, and the silver electrical contacts are inkjet printed. We propose a fitting function of the measured t…

Piezoresistive sensor Wearable technology Semi-transparent Flexible Inkjet printed circuits Organic polymer films ChronoamperometrySettore CHIM/01 - Chimica AnaliticaSettore CHIM/02 - Chimica Fisica
researchProduct