0000000000790122

AUTHOR

Viviana Gammaldi

showing 2 related works from this author

Einstein, Planck and Vera Rubin: Relevant Encounters Between the Cosmological and the Quantum Worlds

2021

In Cosmology and in Fundamental Physics there is a crucial question like: where the elusive substance that we call Dark Matter is hidden in the Universe and what is it made of? that, even after 40 years from the Vera Rubin seminal discovery [1] does not have a proper answer. Actually, the more we have investigated, the more this issue has become strongly entangled with aspects that go beyond the established Quantum Physics, the Standard Model of Elementary particles and the General Relativity and related to processes like the Inflation, the accelerated expansion of the Universe and High Energy Phenomena around compact objects. Even Quantum Gravity and very exotic Dark Matter particle candid…

High Energy Physics - TheoryGeneral Physics and AstronomyNature of dark matter01 natural sciencesGeneral Relativity and Quantum CosmologyCosmologyClassical vs quantum cosmologyHigh Energy Physics - Phenomenology (hep-ph)010303 astronomy & astrophysicsQuantumMathematical PhysicsQuantum gravity and cosmologyPhysicsModification of general relativityChaplygin Gaslcsh:QC1-999CosmologyHigh Energy Physics - PhenomenologyExpansion of the UniversesymbolsGeneral RelativityGeneral relativityMaterials Science (miscellaneous)BiophysicsFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Metric expansion of spacesymbols.namesakeTheory of relativitySettore FIS/05 - Astronomia e Astrofisica0103 physical sciencesDark matterddc:530Cosmological ModelsPhysical and Theoretical ChemistryPlanckEinsteindark matter; galaxies; nature of dark matter; beyond standard model; modification of general relativity; quantum gravity and cosmology; expansion of the Universe010308 nuclear & particles physicsFísicaGalaxiesAstrophysics - Astrophysics of GalaxiesCosmosEpistemologyHigh Energy Physics - Theory (hep-th)quantum gravityAstrophysics of Galaxies (astro-ph.GA)Quantum gravityBeyond standard modellcsh:Physics
researchProduct

Reliability of Monte Carlo event generators for gamma-ray dark matter searches

2013

We study the differences in the gamma-ray spectra simulated by four Monte Carlo event generator packages developed in particle physics. Two different versions of PYTHIA and two of HERWIG are analyzed, namely PYTHIA 6.418 and HERWIG 6.5.10 in Fortran and PYTHIA 8.165 and HERWIG 2.6.1 in C++. For all the studied channels, the intrinsic differences between them are shown to be significative and may play an important role in misunderstanding dark matter signals.

Nuclear and High Energy PhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)FortranMonte Carlo methodDark matterFOS: Physical sciencesGamma ray spectra01 natural sciencesHigh Energy Physics - Phenomenology (hep-ph)Reliability (semiconductor)0103 physical sciences010303 astronomy & astrophysicsEvent generatorcomputer.programming_languageHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsGamma rayFísicaHigh Energy Physics - PhenomenologyMonte Carlo SimulationsAstrophysics - High Energy Astrophysical PhenomenacomputerEvent (particle physics)Astrophysics - Cosmology and Nongalactic Astrophysics
researchProduct