0000000000791215

AUTHOR

Anja Krieger-liszkay

0000-0001-7141-4129

showing 2 related works from this author

Recombinant water-soluble chlorophyll protein from Brassica oleracea var. Botrys binds various chlorophyll derivatives.

2003

A gene coding for water-soluble chlorophyll-binding protein (WSCP) from Brassica oleracea var. Botrys has been used to express the protein, extended by a hexahistidyl tag, in Escherichia coli. The protein has been refolded in vitro to study its pigment binding behavior. Recombinant WSCP was found to bind two chlorophylls (Chls) per tetrameric protein complex but no carotenoids in accordance with previous observations with the native protein [Satoh, H., Nakayama, K., Okada, M. (1998) J. Biol. Chem. 273, 30568-30575]. WSCP binds Chl a, Chl b, bacteriochlorophyll a, and the Zn derivative of Chl a but not pheophytin a, indicating that the central metal ion in Chl is essential for binding. WSCP …

PheophytinChlorophyllProtein FoldingDNA PlantLightTetrameric proteinPhotochemistryPigment bindingPhotosynthetic Reaction Center Complex ProteinsLight-Harvesting Protein ComplexesProtoporphyrinsmacromolecular substancesBrassicaBiologyBiochemistrychemistry.chemical_compoundPigmentPhytolpolycyclic compoundsChlorophyll bindingChlorophyllidesSinglet OxygenCircular DichroismElectron Spin Resonance Spectroscopyfood and beveragesWaterCarotenoidsRecombinant ProteinsBiochemistrychemistrySolubilitySpectrophotometryChlorophyllvisual_artvisual_art.visual_art_mediumProtein foldingSpin LabelsOxidation-ReductionBiochemistry
researchProduct

Energetic coupling between plastids and mitochondria drives CO2 assimilation in diatoms.

2015

International audience; Diatoms are one of the most ecologically successful classes of photosynthetic marine eukaryotes in the contemporary oceans. Over the past 30 million years, they have helped to moderate Earth's climate by absorbing carbon dioxide from the atmosphere, sequestering it via the biological carbon pump and ultimately burying organic carbon in the lithosphere. The proportion of planetary primary production by diatoms in the modern oceans is roughly equivalent to that of terrestrial rainforests. In photosynthesis, the efficient conversion of carbon dioxide into organic matter requires a tight control of the ATP/NADPH ratio which, in other photosynthetic organisms, relies prin…

Aquatic Organismschemistry.chemical_compoundAdenosine TriphosphateSettore BIO/04 - Fisiologia VegetaleCYCLIC ELECTRON FLOWPlastidsPhotosynthesisPHAEODACTYLUM-TRICORNUTUMPlant Proteinschemistry.chemical_classificationMultidisciplinarymicroalgaeRespirationCarbon fixationEnergetic interactionsProton-Motive ForceMitochondriametabolic mutantPhenotypeATP/NADPH ratioOXYGEN PHOTOREDUCTIONCarbon dioxideOxidoreductasesOxidation-ReductionOceanOceans and SeasElectron flowMarine eukaryotesBiologyPhotosynthesisCHLAMYDOMONAS-REINHARDTIICarbon cycleCarbon CycleMitochondrial ProteinsEnergetic exchangesBotanyOrganic matterEcosystem[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular Biology14. Life underwaterPlastidEcosystemDiatomsChemiosmosisfungiECSCarbon Dioxidechemistry13. Climate actionNADP
researchProduct