0000000000791637

AUTHOR

Ivana Apicella

showing 2 related works from this author

Combined HAT/EZH2 modulation leads to cancer-selective cell death

2018

Contains fulltext : 197351.pdf (Publisher’s version ) (Open Access) Epigenetic alterations have been associated with both pathogenesis and progression of cancer. By screening of library compounds, we identified a novel hybrid epi-drug MC2884, a HAT/EZH2 inhibitor, able to induce bona fide cancer-selective cell death in both solid and hematological cancers in vitro, ex vivo and in vivo xenograft models. Anticancer action was due to an epigenome modulation by H3K27me3, H3K27ac, H3K9/14ac decrease, and to caspase-dependent apoptosis induction. MC2884 triggered mitochondrial pathway apoptosis by up-regulation of cleaved-BID, and strong down-regulation of BCL2. Even aggressive models of cancer, …

0301 basic medicineacetylation; apoptosis; cancer; epigenetics; methylation; oncologyProgrammed cell death[SDV.CAN]Life Sciences [q-bio]/Cancer03 medical and health sciencesacetylation; apoptosis; cancer; epigenetics; methylationIn vivomedicinecancerMolecular Biologyacetylationepigeneticsbusiness.industryCancer; Epigenetics; Apoptosis; Acetylation; MethylationEZH2apoptosisApoptosiEpigeneticCancerEpigenomemedicine.disease3. Good healthLeukemia030104 developmental biologyOncologyApoptosisCancer researchmethylationbusinessEx vivoResearch PaperOncotarget
researchProduct

Powerful tumor cell growth-inhibiting activity of a synthetic derivative of atractyligenin: Involvement of PI3K/Akt pathway and thioredoxin system

2014

The semi-synthetic ent-kaurane 15-ketoatractyligenin methyl ester (SC2017) has been previously reported to possess high antiproliferative activity against several solid tumor-derived cell lines. Our study was aimed at investigating SC2017 tumor growth-inhibiting activity and the underlying mechanisms in Jurkat cells (T-cell leukemia) and xenograft tumor models. METHODS: Cell viability was evaluated by MTT assay. Cell cycle progression, reactive oxygen species (ROS) elevation and apoptotic hallmarks were monitored by flow cytometry. Inhibition of thioredoxin reductase (TrxR) by biochemical assays. Levels and/or activation status of signaling proteins were assessed by western blotting. Xenogr…

CellBiophysicsAntineoplastic AgentsApoptosisAtractylosideBiologyCell cycleBiochemistryJurkat cellsMicePhosphatidylinositol 3-KinasesThioredoxinsTumor Cells CulturedmedicineAnimalsHumansMTT assayViability assaySettore BIO/15 - Biologia FarmaceuticaMolecular BiologyProtein kinase BPI3K/AKT/mTOR pathwayCell ProliferationPI3K/AktHCT 116 xenograftCytochromes cApoptosiThioredoxin systemSettore CHIM/06 - Chimica OrganicaCell cycleXenograft Model Antitumor AssaysCell biologymedicine.anatomical_structureCaspasesCancer researchThioredoxinDiterpenes KauraneProto-Oncogene Proteins c-aktEnt-kaurane
researchProduct