0000000000791687

AUTHOR

M. Gierlik

Beta decay of $^{56}$Cu

AbstractThe proton-rich isotope 56 Cu was produced at the GSI On-Line Mass Separator by means ofthe 28 Si( 32 S, p3n) fusion–evaporation reaction. Its β -decay properties were studied by detecting β -delayed γ rays and protons. A half-life of 93± 3 ms was determined for 56 Cu. Compared to theprevious work, six new γ rays and three new levels were assigned to the daughter nucleus 56 Ni. Themeasured Gamow–Teller strength values for five 56 Ni levels are compared toshell-model predictions.  2001 Elsevier Science B.V. All rights reserved. PACS: 21.10.-k; 23.40.-s; 21.60.Cs; 27.40.+zKeywords: R ADIOACTIVITY 56 Cu ( β + ) [from 28 Si( 32 S, p3n)]; Measured E γ , I ; Deduced β -intensity and β -st…

research product

Beta delayed alpha emission from the neutron deficient rare earth isotopes [sup 152]Tm and [sup 150]Ho

The study of beta‐delayed proton emission is a well known method to aid the determination of the beta strength distribution in nuclei far from the stability line. At the neutron deficient side of the nuclear chart the process of proton or alpha emission from excited states is energetically allowed when one goes far enough from stability. However, beta‐delayed alphas have seldom been measured for nuclei heavier than A  =  20. Here we present a study of the beta‐delayed alpha‐particle emission from 152Tm and 150Ho and their importance in the full B(GT) distribution. © 2011 American Institute of Physics

research product

β - and γ -spectroscopy study of Pd119 and Ag119

research product

Investigation of a gas catcher/ion guide system at the Warsaw cyclotron

NESTER ACC; The properties of a gas-catcher/ion guide system, connected to a mass separator at the Heavy Ion Laboratory of Warsaw University, were investigated by using the α-decay recoil products 219Rn and 215Po, obtained from a 223Ra source. The “plasma effect” was studied by using a 14N beam with intensities ranging from 7 to 64 particledot operatornA, which correspond to power depositions between 1.6 dot operator 1016 and 7.2 dot operator 1017 eV/s for helium pressures of 75 and 380 hPa, respectively.

research product

Total absorption spectroscopy of 58Cu decay

The β decay of 58Cu has been studied by means of total absorption γ-ray spectroscopy. The β feeding to the 58Ni states has been measured, and the strength of the 58Cu(1+) →58Ni(0+) Gamow-Teller transition has been determined with improved accuracy.

research product

β- and γ-spectroscopy study of 119Pd and 119Ag

Neutron-rich 119Pd nuclei were produced in fission of natural uranium, induced by 25-MeV protons. Fission fragments swiftly extracted with the Ion Guide Isotope Separation On-Line method were mass separated using a dipole magnet and a Penning trap, providing mono-isotopic samples of 119Pd. Their β− decay was measured with γγ- and βγ-spectroscopy methods using low-energy germanium detectors and a thin plastic scintillator. Two distinct nuclear-level structures were observed in 119Ag, based on the 1/2− and 7/2+ isomers reported previously. The β−-decay work was complemented by a prompt-γ study of levels in 119Ag populated in spontaneous fission of 252Cf, performed using the Gammasphere array …

research product

Fine structure of the Gamow-Teller resonance revealed in the decay of150Ho2−isomer

The $\ensuremath{\gamma}$ rays following the $72s$ ${}^{150}\mathrm{Ho}$ ${2}^{\ensuremath{-}}$ Gamow-Teller $\ensuremath{\beta}$ decay have been investigated with the CLUSTER CUBE setup, an array of six EUROBALL CLUSTER Ge detectors in close cubic geometry, providing a $\ensuremath{\gamma}$ ray detection sensitivity of $2\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}5}$ per $\ensuremath{\beta}$-parent decay for $\ensuremath{\gamma}$-ray energies up to 5 MeV. The fine structure of the Gamow-Teller resonance at 4.4-MeV excitation in ${}^{150}\mathrm{Dy}$ has been studied. The resolved levels are compared with Shell Model predictions.

research product

β-decay study of150Er,152Yb, and156Yb: Candidates for a monoenergetic neutrino beam facility

The beta decays of ^{150}Er, ^{152}Yb, and ^{156}Yb nuclei are investigated using the total absorption spectroscopy technique. These nuclei can be considered possible candidates for forming the beam of a monoenergetic neutrino beam facility based on the electron capture (EC) decay of radioactive nuclei. Our measurements confirm that for the cases studied, the EC decay proceeds mainly to a single state in the daughter nucleus.

research product

β - and γ -spectroscopy study of Pd 119 and Ag 119

research product