0000000000793618

AUTHOR

Elisa Will

0000-0002-7546-6070

showing 3 related works from this author

Observation of the hyperfine transition in lithium-like bismuthBi20980+: Towards a test of QED in strong magnetic fields

2014

We performed a laser spectroscopic determination of the $2s$ hyperfine splitting (HFS) of Li-like ${}^{209}{\text{Bi}}^{80+}$ and repeated the measurement of the $1s$ HFS of H-like ${}^{209}{\text{Bi}}^{82+}$. Both ion species were subsequently stored in the Experimental Storage Ring at the GSI Helmholtzzentrum f\"ur Schwerionenforschung Darmstadt and cooled with an electron cooler at a velocity of $\ensuremath{\approx}0.71\phantom{\rule{0.16em}{0ex}}c$. Pulsed laser excitation of the $M1$ hyperfine transition was performed in anticollinear and collinear geometry for ${\text{Bi}}^{82+}$ and ${\text{Bi}}^{80+}$, respectively, and observed by fluorescence detection. We obtain $\ensuremath{\De…

PhysicschemistryNuclear structurechemistry.chemical_elementLithiumElectronAtomic physicsHyperfine structureAtomic and Molecular Physics and OpticsExcitationIonBismuthMagnetic fieldPhysical Review A
researchProduct

Laser spectroscopy measurement of the 2s-hyperfine splitting in lithium-like bismuth

2017

We have recently reported on the first direct measurement of the $2s$ hyperfine transition in lithium-like bismuth (209Bi80+) at the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt, Germany. Combined with a new measurement of the $1s$ hyperfine splitting (HFS) in hydrogen-like (209Bi82+) the so-called specific difference ${\rm{\Delta }}^{\prime} E=-61.37(36)$ meV could be determined and was found to be in good agreement with its prediction from strong-field bound-state quantum electrodynamics. Here we report on additional investigations performed to estimate systematic uncertainties of these results and on details of the experimental setup. We show that the dominating uncertainty a…

IONSRINGGeneral PhysicsHydrogenProtonhyperfine structure0205 Optical Physics0307 Theoretical And Computational Chemistrychemistry.chemical_elementBEAMPhysics Atomic Molecular & ChemicalPROTON01 natural sciencesIonBismuthGSI0202 Atomic Molecular Nuclear Particle And Plasma Physicsrelativistic and QED effects in ions0103 physical sciencesPhysics::Atomic PhysicsNuclear Experiment010306 general physicsSpectroscopyHyperfine structureESRPhysicsScience & Technology010308 nuclear & particles physicsPhysicsOpticsHYDROGENCondensed Matter PhysicsAtomic and Molecular Physics and OpticschemistryPhysical Scienceslaser spectroscopyLithiumAtomic physicsTRANSITIONSTORAGEJournal of Physics B: Atomic, Molecular and Optical Physics
researchProduct

First observation of the ground-state hyperfine transition in 209Bi80+

2013

The long sought after ground-state hyperfine transition in lithium-like bismuth 209Bi80+ was observed for the first time using laser spectroscopy on relativistic ions in the experimental storage ring at the GSI Helmholtz Centre in Darmstadt. Combined with the transition in the corresponding hydrogen-like ion 209Bi82+, it will allow extraction of the specific difference between the two transitions that is unaffected by the magnetic moment distribution in the nucleus and can therefore provide a better test of bound-state QED in extremely strong magnetic fields.

PhysicsMagnetic momentchemistry.chemical_elementCondensed Matter PhysicsAtomic and Molecular Physics and OpticsIonBismuthMagnetic fieldchemistryPhysics::Atomic PhysicsAtomic physicsNuclear ExperimentGround stateSpectroscopyHyperfine structureMathematical PhysicsStorage ringPhysica Scripta
researchProduct