0000000000801505

AUTHOR

Klaus-peter Knobeloch

Cytosolic RIG-I–like helicases act as negative regulators of sterile inflammation in the CNS

The action of cytosolic RIG-I-like helicases (RLHs) in the CNS during autoimmunity is largely unknown. Using a mouse model of multiple sclerosis, we found that mice lacking the RLH adaptor IPS-1 developed exacerbated disease that was accompanied by markedly higher inflammation, increased axonal damage and elevated demyelination with increased encephalitogenic immune responses. Furthermore, activation of RLH ligands such as 5'-triphosphate RNA oligonucleotides decreased CNS inflammation and improved clinical signs of disease. RLH stimulation repressed the maintenance and expansion of committed T(H)1 and T(H)17 cells, whereas T-cell differentiation was not altered. Notably, T(H)1 and T(H)17 s…

research product

The ubiquitin-specific protease USP8 is critical for the development and homeostasis of T cells

The modification of proteins by ubiquitin has a major role in cells of the immune system and is counteracted by various deubiquitinating enzymes (DUBs) with poorly defined functions. Here we identified the ubiquitin-specific protease USP8 as a regulatory component of the T cell antigen receptor (TCR) signalosome that interacted with the adaptor Gads and the regulatory molecule 14-3-3β. Caspase-dependent processing of USP8 occurred after stimulation of the TCR. T cell-specific deletion of USP8 in mice revealed that USP8 was essential for thymocyte maturation and upregulation of the gene encoding the cytokine receptor IL-7Rα mediated by the transcription factor Foxo1. Mice with T cell-specifi…

research product

NFATc1 releases BCL6-dependent repression of CCR2 agonist expression in peritoneal macrophages fromSaccharomyces cerevisiaeinfected mice

The link between the extensive usage of calcineurin (CN) inhibitors cyclosporin A and tacrolimus (FK506) in transplantation medicine and the increasing rate of opportunistic infections within this segment of patients is alarming. Currently, how peritoneal infections are favored by these drugs, which impair the activity of several signaling pathways including the Ca(++) /CN/NFAT, Ca(++) /CN/cofilin, Ca(++) /CN/BAD, and NF-κB networks, is unknown. Here, we show that Saccharomyces cerevisiae infection of peritoneal resident macrophages triggers the transient nuclear translocation of NFATc1β isoforms, resulting in a coordinated, CN-dependent induction of the Ccl2, Ccl7, and Ccl12 genes, all enc…

research product

IκB kinase 2 determines oligodendrocyte loss by non-cell-autonomous activation of NF-κB in the central nervous system

The IκB kinase complex induces nuclear factor kappa B activation and has recently been recognized as a key player of autoimmunity in the central nervous system. Notably, IκB kinase/nuclear factor kappa B signalling regulates peripheral myelin formation by Schwann cells, however, its role in myelin formation in the central nervous system during health and disease is largely unknown. Surprisingly, we found that brain-specific IκB kinase 2 expression is dispensable for proper myelin assembly and repair in the central nervous system, but instead plays a fundamental role for the loss of myelin in the cuprizone model. During toxic demyelination, inhibition of nuclear factor kappa B activation by …

research product

IkappaB kinase 2 determines oligodendrocyte loss by non-cell-autonomous activation of NF-kappaB in the central nervous system

The IκB kinase complex induces nuclear factor kappa B activation and has recently been recognized as a key player of autoimmunity in the central nervous system. Notably, IκB kinase/nuclear factor kappa B signalling regulates peripheral myelin formation by Schwann cells, however, its role in myelin formation in the central nervous system during health and disease is largely unknown. Surprisingly, we found that brain-specific IκB kinase 2 expression is dispensable for proper myelin assembly and repair in the central nervous system, but instead plays a fundamental role for the loss of myelin in the cuprizone model. During toxic demyelination, inhibition of nuclear factor kappa B activation by …

research product

Plasma membrane Ca2+ ATPase 4 is required for sperm motility and male fertility.

Calcium and Ca(2+)-dependent signals play a crucial role in sperm motility and mammalian fertilization, but the molecules and mechanisms underlying these Ca(2+)-dependent pathways are incompletely understood. Here we show that homozygous male mice with a targeted gene deletion of isoform 4 of the plasma membrane calcium/calmodulin-dependent calcium ATPase (PMCA), which is highly enriched in the sperm tail, are infertile due to severely impaired sperm motility. Furthermore, the PMCA inhibitor 5-(and-6)-carboxyeosin diacetate succinimidyl ester reduced sperm motility in wild-type animals, thus mimicking the effects of PMCA4 deficiency on sperm motility and supporting the hypothesis of a pivot…

research product