0000000000802197

AUTHOR

Daniel Mckinsey

showing 3 related works from this author

Erratum: Search for Light Dark Matter in XENON10 Data [Phys. Rev. Lett.107, 051301 (2011)]

2013

PhysicsDark matterGeneral Physics and AstronomyAstrophysicsLight dark matterParticle detectorPhysical Review Letters
researchProduct

A search for light dark matter in XENON10 data

2011

We report results of a search for light (3.5x10^{-42} cm^2, for a dark matter particle mass m_{\chi}=8 GeV. We find that our data strongly constrain recent elastic dark matter interpretations of excess low-energy events observed by CoGeNT and CRESST-II, as well as the DAMA annual modulation signal.

Cosmology and Nongalactic Astrophysics (astro-ph.CO)LightDark matterGeneral Physics and AstronomyFOS: Physical sciencesElectronsElementary particleElectron01 natural sciencesParticle detectorHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesHumansScattering Radiation010306 general physicsLight dark matterNuclear PhysicsPhysicsPhotons010308 nuclear & particles physicsScatteringFermionBaryonHigh Energy Physics - PhenomenologyData Interpretation StatisticalCosmic RadiationAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

The distributed Slow Control System of the XENON100 experiment

2012

The XENON100 experiment, in operation at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy, was designed to search for evidence of dark matter interactions inside a volume of liquid xenon using a dual-phase time projection chamber. This paper describes the Slow Control System (SCS) of the experiment with emphasis on the distributed architecture as well as on its modular and expandable nature. The system software was designed according to the rules of Object-Oriented Programming and coded in Java, thus promoting code reusability and maximum flexibility during commissioning of the experiment. The SCS has been continuously monitoring the XENON100 detector since mid 2008, remotely recordi…

Physics - Instrumentation and Detectorsarchitecture[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]JavaComputer scienceReal-time computingFOS: Physical scienceschemistry.chemical_elementControl and monitor systems online; Control systems; Detector control systems (detector and experiment monitoring and slow-control systems architecture hardware algorithms databases)algorithms01 natural sciencesXenon0103 physical scienceshardwareDETECTOR CONTROL SYSTEMS[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]CONTROL SYSTEMS010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)InstrumentationMathematical Physicscomputer.programming_languageTime projection chamber010308 nuclear & particles physicsbusiness.industryControl and monitor systems onlineDetector control systems (detector and experiment monitoring and slow-control systemsEmphasis (telecommunications)Volume (computing)Instrumentation and Detectors (physics.ins-det)Modular design[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]chemistryControl systemAstrophysics - Instrumentation and Methods for Astrophysicsdatabases)businesscomputerSystem software
researchProduct