0000000000802261

AUTHOR

Bärbel Rückert

Grafting of Molecularly Imprinted Polymer Films on Silica Supports Containing Surface-Bound Free Radical Initiators

Silica particles containing surface-bound free radical initiators have been used as supports for the grafting of thin films of molecularly imprinted polymers (MIPs). This technique offers a means of fine-tuning the layer thickness for improved kinetic properties or enhanced capacity in chromatographic or sensor applications. Thus prepared MIPs imprinted with l-phenylalanine anilide, have been characterized by FT-IR spectroscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), elemental analysis, fluorescence microscopy, and scanning electron microscopy (SEM), providing evidence concerning the reproducibility in each step and the quantity and quality of the grafted…

research product

Molecularly imprinted composite materials via iniferter-modified supports

Wide pore silica (DP = 100 nm) and gel-type or macroporous (12% nominal crosslinking density) Merrifield resins were modified with iniferter groups for grafting of crosslinked molecularly imprinted or non-imprinted polymer layers through quasi-living polymerisation. Prior to iniferter coupling, the silica supports were premodified by silanisation with p-(chloromethyl)phenyl trimethoxysilane. The iniferter groups were then introduced by reacting the resin-bound chloromethyl groups with sodium N,N-diethyldithiocarbamate. It was shown that the coupling yield, measured as the conversion of the chloromethyl groups, could be varied between 5 and 85% through kinetic control, with the fastest conve…

research product

Layer-by-Layer Grafting of Molecularly Imprinted Polymers via Iniferter Modified Supports

research product