0000000000802391
AUTHOR
M. Veszelei
<title>Cerium-containing counter electrodes for transparent electrochromic devices</title>
Films of Me-Ce oxide (Me: Ti, Zr, Sn, W) and of Ni-Ce hydroxide were produced by reactive magnetron co-sputtering. Li intercalation in Me-Ce oxide, and H exchange in Ni-Ce hydroxide, were accomplished electrochemically. Electrochromism was quenched in proportion with the Ce content in Me-Ce oxide. Films of Zr-Ce (and to some extent Ti-Ce) oxide were able to serve as fully transparent counter electrodes, of much interest for transparent electrochromic devices. In Ni-Ce hydroxide, the Ce addition enhanced the capacity for charge exchange.
Recent Advances in Electrochromics for Smart Windows Applications
Electrochromic smart windows are able to vary their throughput of radiant energy by low-voltage electrical pulses. This function is caused by reversible shuttling of electrons and charge balancing ions between an electrochromic thin film and a transparent counter electrode. The ion transport takes place via a solid electrolyte. Charge transport is evoked by a voltage applied between transparent electrical conductors surrounding the electrochromic film/electrolyte/counter electrode stack. This review summarizes recent progress concerning (i) calculated optical properties of crystalline WO3, (ii) electrochromic properties of heavily disordered W oxide and oxyfluoride films produced by reactiv…