On the sign recovery by LASSO, thresholded LASSO and thresholded Basis Pursuit Denoising
Basis Pursuit (BP), Basis Pursuit DeNoising (BPDN), and LASSO are popular methods for identifyingimportant predictors in the high-dimensional linear regression model Y = Xβ + ε. By definition, whenε = 0, BP uniquely recovers β when Xβ = Xb and β different than b implies L1 norm of β is smaller than the L1 norm of b (identifiability condition). Furthermore, LASSO can recover the sign of β only under a much stronger irrepresentability condition. Meanwhile, it is known that the model selection properties of LASSO can be improved by hard-thresholdingits estimates. This article supports these findings by proving that thresholded LASSO, thresholded BPDNand thresholded BP recover the sign of β in …