0000000000804964

AUTHOR

Hanan Anzid

showing 7 related works from this author

Improving point matching on multimodal images using distance and orientation automatic filtering

2016

International audience; Speed Up Robust Features SURF is one of the most popular and efficient methods used for image registration task. In order to achieve a correct registration, a good matching of feature point is required. However in the case of multimodal images, the high and non-linear intensity changes between different modalities led to many outliers (mismatching of detected points) and consequently a fail in the registration. Therefore, in this paper we introduce an efficient method devoted to the detection and removal of such outlier. It's based on an automatic filtering of outliers on both distance and orientation between features points. We tested our proposed method on a set of…

HistogramsComputer scienceFeature extractionComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONImage registration02 engineering and technologyimage matchingfeature point matchingRANSACElectronic mailautomatic outlier filteringHistogramautomatic orientation filteringhigh-nonlinear intensity[ INFO.INFO-TI ] Computer Science [cs]/Image Processing0202 electrical engineering electronic engineering information engineeringautomatic distance filteringOutlier detectionComputer visionIR visible imagesRobustnessmultimodal imagesUV imagesImage registrationimage filteringMeasurementbusiness.industryFeature matchingSURF020206 networking & telecommunicationsPoint set registrationPattern recognitionDetectorsdetected point mismatchingcultural heritagefluorescence imagesElectronic mail[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV]Outlierspeed-up robust featuresFeature extraction020201 artificial intelligence & image processingAnomaly detectionArtificial intelligencebusiness
researchProduct

Benchmarking Saliency Detection Methods on Multimodal Image Data

2018

Saliency detecmage processing. Most of the work is adapted to the specific application and available dataset. The present work is about a comparative analysis of saliency detection for multimodal images dataset. There were many researches on the detection of saliency on several types of images, such as multispectral, natural, 3D and so on. This work presents a first focused study on saliency detection on multimodal images. Our database was extracted from acquisitions on cultural heritage wall paintings that contain four modalities UV, IR, Visible and fluorescence. In this paper, the analysis has been performed for many methods on saliency detection. We evaluate the performance of each metho…

Modality (human–computer interaction)Similarity (geometry)Computer sciencebusiness.industry05 social sciencesMultispectral imageComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONPattern recognition02 engineering and technologyBenchmarking050105 experimental psychologyMultimodal imageMetric (mathematics)0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processing0501 psychology and cognitive sciencesSaliency mapArtificial intelligencebusiness
researchProduct

SVM-based classification of High resolution Urban Satellites Images using Dense SURF and Spectral Information

2018

Remote-sensing focusing on image classification knows a large progress and receives the attention of the remote-sensing community day by day. Combining many kinds of extracted features has been successfully applied to High resolution urban satellite images using support vector machine (SVM). In this paper, we present a methodology that is promoting a performed classification by using pixel-wise SURF description features combined with spectral information in Cielab space for the first time on common scenes of urban imagery. The proposed method gives a promising classification accuracy when compared with the two types of features used separately.

010504 meteorology & atmospheric sciencesContextual image classificationComputer sciencebusiness.industryComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION0211 other engineering and technologiesHigh resolutionPattern recognition02 engineering and technologySpace (commercial competition)01 natural sciencesSupport vector machineSatelliteArtificial intelligencebusiness021101 geological & geomatics engineering0105 earth and related environmental sciencesProceedings of the 12th International Conference on Intelligent Systems: Theories and Applications
researchProduct

Improvement of multimodal images classification based on DSMT using visual saliency model fusion with SVM

2019

Multimodal images carry available information that can be complementary, redundant information, and overcomes the various problems attached to the unimodal classification task, by modeling and combining these information together. Although, this classification gives acceptable classification results, it still does not reach the level of the visual perception model that has a great ability to classify easily observed scene thanks to the powerful mechanism of the human brain.
  In order to improve the classification task in multimodal image area, we propose a methodology based on Dezert-Smarandache formalism (DSmT), allowing fusing the combined spectral and dense SURF features extracted …

Support vector machineSvm classifierFusionComputer sciencebusiness.industryPattern recognitionArtificial intelligenceVisual saliency modelbusinessSensor fusionVisual saliency
researchProduct

Multimodal Images Classification using Dense SURF, Spectral Information and Support Vector Machine

2019

International audience; The multimodal image classification is a challenging area of image processing which can be used to examine the wall painting in the cultural heritage domain. In such classification, a common space of representation is important. In this paper, we present a new method for multimodal representation learning, by using a pixel-wise feature descriptor named dense Speed Up Robust Features (SURF) combined with the spectral information carried by the pixel. For classification of extracted features we have used support vector machine (SVM). Our database was extracted from acquisition on cultural heritage wall paintings that contain four modalities UV, Visible, IRR and fluores…

Computer scienceComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONImage processing02 engineering and technologyImage (mathematics)0202 electrical engineering electronic engineering information engineeringFeature descriptorRepresentation (mathematics)Spectral informationSpeeded up robust features SURFGeneral Environmental SciencePixelbusiness.industry[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]020206 networking & telecommunicationsPattern recognitionSVM classificationSupport vector machineCultural heritageMultimodal imagesCielab spaceDense features[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV]General Earth and Planetary Sciences020201 artificial intelligence & image processingArtificial intelligencebusinessFeature learning
researchProduct

An automatic filtering algorithm for SURF-based registration of remote sensing images

2017

International audience; The registration of remote sensing images has been often a necessary step for further analyses of images taken at different times, different viewing geometry or with different sensors. For this task there exists many approaches. This paper focuses on the feature-based category of image registration methods. Particularly, we propose an improvement of the SURF algorithm on the point matching step. Indeed, in order to achieve a correct registration, a good matching of feature point is required. However The presence of outliers lead to a fail in the registration. Therefore, in this paper, we introduce an efficient method devoted to the detection and removal of such outli…

RegistrationComputer scienceSatellitesFeature extractionRANSAC filtering0211 other engineering and technologiesComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONImage registration02 engineering and technologyimage matchingRANSACpoint matching stepElectronic mailautomatic filtering algorithmRobustness (computer science)0202 electrical engineering electronic engineering information engineeringOutlier detectionComputer vision[INFO]Computer Science [cs]RobustnessSURF-based registrationImage registration021101 geological & geomatics engineeringRemote sensingimage filteringMeasurementAutomatic filteringviewing geometrybusiness.industrySURF algorithmFeature matchingPoint set registrationRemote sensingfeature pointgeophysical image processingElectronic mail[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV]Outlierimage registration methodsFeature extraction020201 artificial intelligence & image processingArtificial intelligencebusinessremote sensing images
researchProduct

Fusion of multimodal data by combining the uncertainty and perception models

2019

The general idea is to use together heterogeneous multiple information on the same problem tainted by imperfections and coming from several sources in order to improve the knowledge of a given situation. Appropriate visualization of the images to aid in decision making using the perceptual information carried by the salience maps.

Fusion des imagesApproche statistiqueFusion of imagesStatistical approachImages multimodaleTheory of uncertainMultimodal Image[INFO.INFO-IA]Computer Science [cs]/Computer Aided EngineeringThéorie de l’incertain[INFO.INFO-IA] Computer Science [cs]/Computer Aided EngineeringSaillance
researchProduct