0000000000806356

AUTHOR

J. Thomsen

showing 3 related works from this author

Search forBs0→μ+μ−andB0→μ+μ−Decays with CDF II

2011

A search has been performed for B{sub s}{sup 0} {yields} {mu}{sup +}{mu}{sup -} and B{sup 0} {yields} {mu}{sup +}{mu}{sup -} decays using 7 fb{sup -1} of integrated luminosity collected by the CDF II detector at the Fermilab Tevatron collider. The observed number of B{sup 0} candidates is consistent with background-only expectations and yields an upper limit on the branching fraction of {Beta}(B{sup 0} {yields} {mu}{sup +}{mu}{sup -}) < 6.0 x 10{sup -9} at 95% confidence level. We observe an excess of B{sub s}{sup 0} candidates. The probability that the background processes alone could produce such an excess or larger is 0.27%. The probability that the combination of background and the expe…

Flight directionNuclear and High Energy PhysicsParticle physicsMesonTevatronGeneral Physics and Astronomy01 natural sciences7. Clean energyLuminosityStandard Modellaw.inventionNuclear physicsParticle decaychemistry.chemical_compoundlawTheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITY0103 physical sciencesInvariant massLimit (mathematics)FermilabCollider010306 general physicsPhysicsMuon010308 nuclear & particles physicsBranching fractionSupersymmetryD0 experimentIMesCrystallographychemistryDecay lengthHigh Energy Physics::ExperimentLeptonPhysical Review Letters
researchProduct

Intracranial pressure monitoring in patients with acute brain injury in the intensive care unit (SYNAPSE-ICU): an international, prospective observat…

2021

Background: The indications for intracranial pressure (ICP) monitoring in patients with acute brain injury and the effects of ICP on patients’ outcomes are uncertain. The aims of this study were to describe current ICP monitoring practises for patients with acute brain injury at centres around the world and to assess variations in indications for ICP monitoring and interventions, and their association with long-term patient outcomes. Methods: We did a prospective, observational cohort study at 146 intensive care units (ICUs) in 42 countries. We assessed for eligibility all patients aged 18 years or older who were admitted to the ICU with either acute brain injury due to primary haemorrhagic…

MaleIntracranial PressureGlasgow Outcome ScaleMalalties cerebralsintensive care unitlaw.inventionCohort Studies0302 clinical medicinelawBrain Injuries TraumaticMedicineacute brain injuryProspective StudiesProspective cohort studyUnitats de cures intensivesIntracranial pressureIntensive care unitsGlasgow Outcome ScaleMiddle AgedIntensive care unitIntensive Care UnitsHypertensionIntracranial pressure monitoringFemaleHipertensióBrain diseasesAdultmedicine.medical_specialtyCritical CareTraumatic brain injuryIntracranial pressure monitoring brain injury03 medical and health sciencesInternal medicineIntensive careSettore MED/41 - ANESTESIOLOGIAHumansGlasgow Coma ScaleAgedMonitoring Physiologicbusiness.industryGlasgow Coma Scale030208 emergency & critical care medicineICPIntracranial pressure monitoringmedicine.diseaseBrain InjuriesNeurology (clinical)Intracranial Hypertensionbusiness030217 neurology & neurosurgery
researchProduct

Measurement of thett¯production cross section inpp¯collisions ats=1.96  TeVusing soft electronb-tagging

2010

The authors present a measurement of the t{bar t} production cross section using events with one charged lepton and jets from p{bar p} collisions at a center-of-mass energy of 1.96 TeV. A b-tagging algorithm based on the probability of displaced tracks coming from the event interaction vertex is applied to identify b quarks from top decay. Using 318 pb{sup -1} of data collected with the CDF II detector, they measure the t{bar t} production cross section in events with at least one restrictive (tight) b-tagged jet and obtain 8.9{sub -1.0}{sup +1.0}(stat.){sub -1.0}{sup +1.1}(syst.) pb. The cross section value assumes a top quark mass of m{sub t} is presented in the paper. This result is cons…

Top quarkCollider physicsHadronTevatronGeneral Physics and AstronomyElementary particleKinematicsElectronJet (particle physics)01 natural sciences7. Clean energyParticle identificationlaw.inventionlawInvariant massFermilabNuclear ExperimentQuantum chromodynamicsPhysicsLarge Hadron ColliderLuminosity (scattering theory)Supersymmetryb-taggingHadronizationTransverse planeProduction (computer science)Collider Detector at FermilabQuarkSemileptonic decayNuclear and High Energy PhysicsParticle physicsBar (music)Astrophysics::High Energy Astrophysical PhenomenaBottom quarkMeasure (mathematics)Standard ModelNuclear physicsCross section (physics)Particle decay0103 physical sciencesCollider010306 general physicsCompact Muon SolenoidMuonBranching fraction010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyMultiplicity (mathematics)FermionVertex (geometry)Pair productionHigh Energy Physics::ExperimentEnergy (signal processing)Bar (unit)LeptonPhysical Review D
researchProduct