0000000000810573

AUTHOR

Walter Wahli

showing 3 related works from this author

9-cis-Retinoic acid enhances fatty acid-induced expression of the liver fatty acid-binding protein gene

1997

The role of retinoic acids (RA) on liver fatty acid- binding protein (L-FABP) expression was investigated in the well differentiated FAO rat hepatoma cell line. 9-cis-Retinoic acid (9-ci's-RA) specifically enhanced L-FABP mRNA levels in a time- and dose-dependent manner. The higher induction was found 6 h after addition of 10 -6 M 9-CK-RA in the medium. RA also enhanced further both L-FABP mRNA levels and cytosolic L-FABP protein content induced by oleic acid. The retinoid X receptor (RXR) and the peroxisome proliferator-activated receptor (PPAR), which are known to be activated, respectively, by 9-c/s-RA and long chain fatty acid (LCFA), co-operated to bind specifically the peroxisome prol…

9-cw-Retinoic acidReceptors Retinoic Acid[SDV]Life Sciences [q-bio]Receptors Cytoplasmic and NuclearPeroxisome proliferator-activated receptorMyelin P2 ProteinMicrobodiesBiochemistry0302 clinical medicineStructural BiologyTumor Cells CulturedAlitretinoinchemistry.chemical_classification0303 health sciencesChemistryFatty AcidsDrug SynergismPeroxisomeNeoplasm Proteins9-cis-Retinoic acidLiverBiochemistryFree fatty acid receptorlipids (amino acids peptides and proteins)Peroxisome proliferator-activated receptor alphaLong chain fatty acidFatty Acid-Binding Protein 7DimerizationPeroxisome proliferator-activated receptor gammaCarcinoma HepatocellularBiophysicsNerve Tissue ProteinsTretinoinRetinoid X receptorFatty Acid-Binding ProteinsLiver fatty acid-binding protein03 medical and health sciencesGeneticsAnimalsRNA MessengerMolecular Biology030304 developmental biologyFAO hepatoma cellFatty acidCell BiologyFatty acidRatsRetinoid X ReceptorsGene Expression RegulationNuclear receptorGene expressionCarrier Proteins[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition030217 neurology & neurosurgeryTranscription FactorsFEBS Letters
researchProduct

Glycogen synthase 2 is a novel target gene of peroxisome proliferator-activated receptors.

2007

International audience; Glycogen synthase 2 (Gys-2) is the ratelimiting enzyme in the storage of glycogen in liver and adipose tissue, yet little is known about regulation of Gys-2 transcription. The peroxisome proliferator-activated receptors (PPARs) are transcription factors involved in the regulation of lipid and glucose metabolism and might be hypothesized to govern glycogen synthesis as well. Here, we show that Gys-2 is a direct target gene of PPARalpha, PPARbeta/delta and PPARgamma. Expression of Gys-2 is significantly reduced in adipose tissue of PPARalpha-/-, PPARbeta/delta-/- and PPARgamma+/- mice. Furthermore, synthetic PPARbeta/delta, and gamma agonists markedly up-regulate Gys-2…

Animals; Chromatin/ultrastructure; DNA Primers; Gene Expression Regulation Enzymologic; Glycogen Synthase/genetics; Hepatocytes/enzymology; Hepatocytes/physiology; Mice; Mice Knockout; Peroxisome Proliferator-Activated Receptors/deficiency; Peroxisome Proliferator-Activated Receptors/genetics; Polymerase Chain Reaction; RNA/genetics; RNA/isolation & purification; Rats; Transcription GeneticTranscription GeneticPeroxisome proliferator-activated receptorMESH : HepatocytesPPREPolymerase Chain Reactionadipose-tissuePPARMESH: HepatocytesMice0302 clinical medicineMESH: Animals610 Medicine & healthchemistry.chemical_classificationRegulation of gene expression0303 health sciencesGlycogenglycogen-synthaseChromatinGlycogen Synthase030220 oncology & carcinogenesisMESH : DNA PrimersmicroarrayMESH: DNA Primersmedicine.medical_specialtyHealth aging / healthy living [IGMD 5]fatty-acid oxidationliverGene Expression Regulation EnzymologicMESH: Chromatin03 medical and health sciencesskeletal-muscleGlycogen synthaseMolecular Biology[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular BiologyHNF4αVLAGPharmacologybeta/deltaMESH: Polymerase Chain Reactionresponse elementsMESH : Peroxisome Proliferator-Activated ReceptorsEndocrinologychemistryMicrobial pathogenesis and host defense [UMCN 4.1]Response elementPeroxisome Proliferator-Activated ReceptorsAdipose tissueMESH: Peroxisome Proliferator-Activated Receptorsin-vivoMESH: Mice KnockoutTransactivationchemistry.chemical_compoundVoeding Metabolisme en GenomicaMESH : RNAMESH : Polymerase Chain ReactionMice KnockoutMESH : ChromatinMESH : RatsMESH: Gene Expression Regulation EnzymologicMetabolism and Genomicsadipose tissueMetabolisme en GenomicaMolecular MedicineNutrition Metabolism and GenomicsMESH : Glycogen SynthaseResearch ArticleMESH: Ratsglycogen synthase 2610 Medicine & healthBiologyMESH : Gene Expression Regulation EnzymologicCellular and Molecular NeuroscienceVoedingMESH: RNAInternal medicineMESH : MicemedicineAnimals[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyTranscription factorMESH: Micealpha ppar-alpha030304 developmental biologyNutritionDNA PrimersMESH: Glycogen SynthaseMESH: Transcription GeneticMESH : Transcription GeneticCell BiologyRatsgene transcriptionbiology.proteinHepatocytesRNAMESH : Mice KnockoutgammaMESH : Animalsmetabolism
researchProduct

Transcriptional Regulation by Triiodothyronine of the UDP-glucuronosyltransferase Family 1 Gene Complex in Rat Liver

1997

Abstract This study demonstrates that the expression of the phenol UDP-glucuronosyltransferase 1 gene (UGT1A1) is regulated at the transcriptional level by thyroid hormone in rat liver. Following 3,5,3′-triiodo-l-thyronine (T3) stimulation in vivo, there is a gradual increase in the amount of UGT1A1 mRNA with maximum levels reached 24 h after treatment. In comparison, induction with the specific inducer, 3-methylcholanthrene (3-MC), results in maximal levels of UGT1A1 mRNA after 8 h of treatment. In primary hepatocyte cultures, the stimulatory effect of both T3 and 3-MC is also observed. This induction is suppressed by the RNA synthesis inhibitor actinomycin D, indicating that neither induc…

Messenger RNAAromatic hydrocarbon receptorStimulationCell BiologyMRNA stabilizationCycloheximideBiologydigestive systemBiochemistryMolecular biologychemistry.chemical_compoundchemistryMethylcholanthreneTranscriptional regulationInducerMolecular BiologyJournal of Biological Chemistry
researchProduct