0000000000812923
AUTHOR
Alejandro Garcia
Systematic and statistical uncertainties of the hilbert-transform based high-precision FID frequency extraction method.
Abstract Pulsed nuclear magnetic resonance (NMR) is widely used in high-precision magnetic field measurements. The absolute value of the magnetic field is determined from the precession frequency of nuclear magnetic moments. The Hilbert transform is one of the methods that have been used to extract the phase function from the observed free induction decay (FID) signal and then its frequency. In this paper, a detailed implementation of a Hilbert-transform based FID frequency extraction method is described, and it is briefly compared with other commonly used frequency extraction methods. How artifacts and noise level in the FID signal affect the extracted phase function are derived analytical…
Electron capture on116In and implications for nuclear structure related to double-βdecay
The electron capture decay branch of ${}^{116}$In has been measured to be $[2.46\ifmmode\pm\else\textpm\fi{}0.44(\mathrm{stat}.)\ifmmode\pm\else\textpm\fi{}0.39(\mathrm{syst}.)]\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}4}$ using Penning trap-assisted decay spectroscopy. The corresponding Gamow-Teller transition strength is shown to be compatible with the most recent value extracted from the $(p,n)$ charge-exchange reaction, providing a resolution to longstanding discrepancies. This transition can now be used as a reliable benchmark for nuclear-structure calculations of the matrix element for the neutrinoless double-$\ensuremath{\beta}$ decay of ${}^{116}$Cd and other nuclides.
Electron capture on 116In and implications for nuclear structure related to double-\beta decay
The electron capture decay branch of 116In has been measured to be [2.46 ± 0.44(stat.) ± 0.39(syst.)] × 10−4 using Penning trap-assisted decay spectroscopy. The corresponding Gamow-Teller transition strength is shown to be compatible with the most recent value extracted from the (p, n) charge-exchange reaction, providing a resolution to longstanding discrepancies. This transition can now be used as a reliable benchmark for nuclearstructure calculations of the matrix element for the neutrinoless double-β decay of 116Cd and other nuclides. peerReviewed