0000000000814082
AUTHOR
Yanbing Lin
Multi-step ahead wind speed forecasting using an improved wavelet neural network combining variational mode decomposition and phase space reconstruction
Abstract Accurate wind speed forecasting is crucial to reliable and secure power generation system. However, the intermittent and unstable nature of wind speed makes it very difficult to be predicted accurately. This paper proposes a novel hybrid model based on variational mode decomposition (VMD), phase space reconstruction (PSR) and wavelet neural network optimized by genetic algorithm (GAWNN) for multi-step ahead wind speed forecasting. In the proposed model, VMD is firstly applied to disassemble the original wind speed series into a number of components in order to improve the overall prediction accuracy. Then, the multi-step ahead forecasting for each component is conducted using GAWNN…
Multi-step ahead electricity price forecasting using a hybrid model based on two-layer decomposition technique and BP neural network optimized by firefly algorithm
In the deregulated competitive electricity market, the price which reflects the relationship between electricity supply and demand is one of the most important elements, making it crucial for all market participants to precisely forecast the electricity price. However, electricity price series usually has complex features such as non-linearity, non-stationarity and volatility, which makes the price forecasting turn out to be very difficult. In order to improve the accuracy of electricity price forecasting, this paper first proposes a two-layer decomposition technique and then develops a hybrid model based on fast ensemble empirical mode decomposition (FEEMD), variational mode decomposition …