0000000000814300

AUTHOR

Pascal Bourdon

showing 2 related works from this author

Improving mid-infrared supercontinuum generation efficiency by pumping a fluoride fiber directly into the anomalous regime at 1995 nm

2011

Supercontinuum sources in the mid-infrared may found many potential applications to spectroscopy and material caracterization. Supercontinuum light extending up to 4000 nm has been efficiently generated in fluorozirconate glasses (ZBLAN) with 10.5 W power using an amplified nanosecond pulsed laser diode at 1550 nm [1]. As the dispersion wavelength of the fiber is closed to 1700 nm, pumping at 1550 nm does not directly allow generation of solitons. A first approach is thus to pump a piece of SMF fiber in the anomalous dispersion regime to generate the solitons and shift them to the anomalous dispersion regime of the ZBLAN fiber [1,2]. Another approach is to use a high power femtosecond laser…

Optical fiberMaterials sciencebusiness.industryPhysics::Opticslaw.inventionSupercontinuumOptical pumpingchemistry.chemical_compoundZero-dispersion wavelengthOpticschemistrylawZBLANDispersion (optics)Dispersion-shifted fiberbusinessSelf-phase modulation2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC)
researchProduct

Fourth-order cascaded Raman shift in AsSe chalcogenide suspended-core fiber pumped at 2 μm

2011

International audience; Cascaded Raman wavelength shifting up to the fourth order ranging from 2092 to 2450nm is demonstrated using a nanosecond pump at 1995nm in a low-loss As38Se62 suspended-core microstructured fiber. These four Stokes shifts are obtained with a low peak power of 11W, and only 3W are required to obtain three shifts. The Raman gain coefficient for the fiber is estimated to (1.6 +-0.5)x 10e−11 m/W at 1995nm. The positions and the amplitudes of the Raman peaks are well reproduced by the numerical simulations of the nonlinear propagation.

Materials scienceOptical fibermoyen infrarougeChalcogenide02 engineering and technologyverre de chalcogénurecascades Raman01 natural scienceslaw.invention010309 opticssymbols.namesakechemistry.chemical_compoundOpticslawfibre optique microstucturée0103 physical sciencesFiber[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryoptique nonlinéaireNonlinear optics[CHIM.MATE]Chemical Sciences/Material chemistryNanosecond021001 nanoscience & nanotechnologyAtomic and Molecular Physics and OpticsCore (optical fiber)coeur suspenduchemistry[ CHIM.MATE ] Chemical Sciences/Material chemistrysymbols190.5650 060.4370 060.2390.0210 nano-technologyRaman spectroscopybusinessRaman scattering
researchProduct