0000000000814300
AUTHOR
Pascal Bourdon
Improving mid-infrared supercontinuum generation efficiency by pumping a fluoride fiber directly into the anomalous regime at 1995 nm
Supercontinuum sources in the mid-infrared may found many potential applications to spectroscopy and material caracterization. Supercontinuum light extending up to 4000 nm has been efficiently generated in fluorozirconate glasses (ZBLAN) with 10.5 W power using an amplified nanosecond pulsed laser diode at 1550 nm [1]. As the dispersion wavelength of the fiber is closed to 1700 nm, pumping at 1550 nm does not directly allow generation of solitons. A first approach is thus to pump a piece of SMF fiber in the anomalous dispersion regime to generate the solitons and shift them to the anomalous dispersion regime of the ZBLAN fiber [1,2]. Another approach is to use a high power femtosecond laser…
Fourth-order cascaded Raman shift in AsSe chalcogenide suspended-core fiber pumped at 2 μm
International audience; Cascaded Raman wavelength shifting up to the fourth order ranging from 2092 to 2450nm is demonstrated using a nanosecond pump at 1995nm in a low-loss As38Se62 suspended-core microstructured fiber. These four Stokes shifts are obtained with a low peak power of 11W, and only 3W are required to obtain three shifts. The Raman gain coefficient for the fiber is estimated to (1.6 +-0.5)x 10e−11 m/W at 1995nm. The positions and the amplitudes of the Raman peaks are well reproduced by the numerical simulations of the nonlinear propagation.