0000000000815680
AUTHOR
Bastian Märkisch
Neutron Decay with PERC: a Progress Report
The PERC collaboration will perform high-precision measurements of angular correlations in neutron beta decay at the beam facility MEPHISTO of the Forschungs-Neutronenquelle Heinz Maier-Leibnitz in Munich, Germany. The new beam station PERC, a clean, bright, and versatile source of neutron decay products, is designed to improve the sensitivity of neutron decay studies by one order of magnitude. The charged decay products are collected by a strong longitudinal magnetic field directly from inside a neutron guide. This combination provides the highest phase space density of decay products. A magnetic mirror serves to perform precise cuts in phase space, reducing related systematic errors. The …
The beta-, neutrino- and proton-asymmetry in neutron beta-decay
This article describes measurements of angular-correlation coefficients in the decay of free neutrons with the superconducting spectrometer PERKEO II. A method for measuring the β-asymmetry coefficient A is presented, as well as a new method for determining the neutrino-asymmetry coefficient B, which allows a value for the proton-asymmetry coefficient C to be obtained for the first time. An ongoing experiment is trying to improve the accuracy of these quantities.
Design of the Magnet System of the Neutron Decay Facility PERC
The PERC (Proton and Electron Radiation Channel) facility is currently under construction at the research reactor FRM II, Garching. It will serve as an intense and clean source of electrons and protons from neutron beta decay for precision studies. It aims to contribute to the determination of the Cabibbo-Kobayashi-Maskawa quark-mixing element $V_{ud}$ from neutron decay data and to search for new physics via new effective couplings. PERC's central component is a 12m long superconducting magnet system. It hosts an 8m long decay region in a uniform field. An additional high-field region selects the phase space of electrons and protons which can reach the detectors and largely improves system…