0000000000816208
AUTHOR
Friedrich Götz
A multi-country test of brief reappraisal interventions on emotions during the COVID-19 pandemic
© The Author(s), under exclusive licence to Springer Nature Limited 2021, corrected publication 2022
The NreA Protein Functions as a Nitrate Receptor in the Staphylococcal Nitrate Regulation System
Staphylococci are able to use nitrate as an alternative electron acceptor during anaerobic respiration. The regulation of energy metabolism is dependent on the presence of oxygen and nitrate. Under anaerobic conditions, staphylococci employ the nitrate regulatory element (Nre) for transcriptional activation of genes involved in reduction and transport of nitrate and nitrite. Of the three proteins that constitute the Nre system, NreB has been characterized as an oxygen sensor kinase and NreC has been characterized as its cognate response regulator. Here, we present structural and functional data that establish NreA as a new type of nitrate receptor. The structure of NreA with bound nitrate w…
Nitrate/oxygen co-sensing by an NreA/NreB sensor complex ofStaphylococcus carnosus
In Staphylococci maximal induction of nitrate reductase (narGHJI genes) requires anaerobic conditions, the presence of nitrate, and the NreABC regulatory system. Aerobic regulation is effected by the NreB/NreC two-component system. The role of the nitrate receptor NreA in nitrate induction and its relation to aerobic regulation was analysed in Staphylococcus carnosus. Nitrate induction of a narG-lip reporter gene required presence of NreB/NreC. When nreA was deleted, nitrate was no longer required for maximal induction, suggesting that NreA is a nitrate regulated inhibitor of NreB/NreC. In vitro, NreA and mutant NreA(Y95A) decreased NreB phosphorylation in part or completely, which was due …
Staphylococcal NreB: an O2-sensing histidine protein kinase with an O2-labile iron-sulphur cluster of the FNR type
Summary The nreABC ( n itrogen re gulation) operon encodes a new staphylococcal two-component regulatory sys- tem that controls dissimilatory nitrate/nitrite reduc- tion in response to oxygen. Unlike other two- component sensors NreB is a cytosolic protein with four N-terminal cysteine residues. It was shown that both the NreB-cysteine cluster and Fe ions are required for function. Isolated NreB was converted to the active form by incubation with cysteine desul- phurase, ferrous ions and cysteine. This activation is typical for FeS-containing proteins and was reversed by oxygen. During reconstitution an absorption band at 420 nm and a yellow-brownish colour (typical for an FNR-type iron-sul…