0000000000819334

AUTHOR

Mélanie François

Continuous hydrothermal synthesis of doped barium zirconate powder for PCFC (Protonic Ceramic Fuel Cell) application

International audience; BaZr 1-x M x O 3-d (M=Ce and/or Y) perovskite materials are good potential candidates for Protonic Ceramic Fuel Cell (PCFC) electrolyte due to their remarkable property of protonic conduction at intermediate temperature (400-600°C). Fabbri et al. have reported a protonic conductivity of 2.10-2 S.cm-1 at 600°C for BaCe 0.7 Zr 0.1 Y 0.2 O 3-d [1]. However, the synthesis of these materials requires high temperature (1500°C) by solid state reaction. The hydrothermal synthesis in supercritical water appears then as a way to synthetize perovskite materials at a temperature as low as 400°C. Furthermore, this process allows the formation of nanometric powder. Finally the con…

research product

Continuous hydrothermal synthesis in supercritical conditions as a novel process for the elaboration of Y-doped BaZrO3

Abstract The present work describes a novel process for the elaboration of a ceramic material. Y-doped barium zirconate, an electrolyte material for Protonic Ceramic Fuel cell, was synthesized by a continuous hydrothermal process in supercritical conditions (410 °C/30.0 MPa) using nitrate precursors and NaOH reactants. The use of supercritical water allowed the formation of particles of about 50 nm in diameter with a narrow size distribution. X-Ray Diffraction examination revealed that a major perovskite phase with few BaCO3 and YO(OH) impurities was obtained. BaCO3 is assumed to form due to faster kinetics than Y-doped BaZrO3 resulting in a Ba-deficient perovskite phase. The Ba-deficiency …

research product