0000000000820335
AUTHOR
Odile Bohnke
An electrochemical quartz crystal microbalance study of lithium insertion into thin films of tungsten trioxide I. Modeling of the ionic insertion mechanism
A theoretical description of the mechanism of lithium insertion into amorphous thin films of tungsten trioxide (a-WO3) prepared by thermal vacuum evaporation of WO3 powder is presented. The model developed is based on the experimental results obtained by chronoamperometry and ac impedance spectroscopy associated with electrochemical quartz crystal microbalance (EQCM). The electrode mass change and the current flowing through the electrochemical cell during cathodic polarization are simulta neously recorded. As expected, it can be observed that the insertion process is associated with a gain of mass of the inserted electrode at long times (t > 1 s). On the other hand at short times (t < 1 s)…
An electrochemical quartz crystal microbalance study of lithium insertion into thin films of tungsten trioxide II. Experimental results and comparison with model calculations
Abstract Lithium insertion into amorphous thin films of tungsten trioxide (a-WO 3 ) prepared by thermal vacuum evaporation of WO 3 powder has been studied experimentally by chronoamperometry, cyclic voltammetry and ac impedance spectroscopy associated with electrochemical quartz crystal microbalance (EQCM). During cathodic polarization of the electrode and at short times two antagonistic processes occur. One is a non faradaic process and is associated with the expulsion of anions from the electrode surface under the effect of the electric field built in the electrolyte when a potential difference is imposed between the electrodes. The other one is the faradaic insertion of non-solvated lith…
Chalcogenide Glasses Based on Germanium Disulfide for Second Harmonic Generation
International audience; High second-order susceptibilities are created by thermal poling in bulk germanium disulfide based chalcogenide glasses. Experimental conditions of the poling treatment (temperature, voltage, time) were optimized for each glass composition. The second-order nonlinear signals were recorded by using the Maker fringes experiment and a second-order coefficient χ(2) up to 8 pm V-1 was measured in the Ge25Sb10S65 glass. This value is obtained using a simulation based on accurate knowledge of the thickness of the nonlinear layer. Two mechanisms are proposed to explain the creation of a nonlinear layer under the anode: the formation and the migration of charged defects towar…