0000000000822707

AUTHOR

Sergey Piskarev

showing 2 related works from this author

The Exponential Dichotomy under Discretization on General Approximation Scheme

2011

This paper is devoted to the numerical analysis of abstract parabolic problem 𝑢  ( 𝑡 ) = 𝐴 𝑢 ( 𝑡 ) ; 𝑢 ( 0 ) = 𝑢 0 , with hyperbolic generator 𝐴 . We are developing a general approach to establish a discrete dichotomy in a very general setting in case of discrete approximation in space and time. It is a well-known fact that the phase space in the neighborhood of the hyperbolic equilibrium can be split in a such way that the original initial value problem is reduced to initial value problems with exponential decaying solutions in opposite time direction. We use the theory of compact approximation principle and collectively condensing approximation to show that such a decomposition o…

Article SubjectPolymers and PlasticsDiscretizationSpacetimeExponential dichotomyPhase spaceNumerical analysisMathematical analysisFinite difference methodInitial value problemMathematicsHyperbolic equilibrium pointAdvances in Numerical Analysis
researchProduct

Approximations of Parabolic Equations at the Vicinity of Hyperbolic Equilibrium Point

2014

This article is devoted to the numerical analysis of the abstract semilinear parabolic problem u′(t) = Au(t) + f(u(t)), u(0) = u 0, in a Banach space E. We are developing a general approach to establish a discrete dichotomy in a very general setting and prove shadowing theorems that compare solutions of the continuous problem with those of discrete approximations in space and time. In [3] the discretization in space was constructed under the assumption of compactness of the resolvent. It is a well-known fact (see [10, 11]) that the phase space in the neighborhood of the hyperbolic equilibrium can be split in a such way that the original initial value problem is reduced to initial value prob…

Control and OptimizationDiscretizationMathematical analysisBanach spaceSpace (mathematics)Linear subspaceComputer Science ApplicationsCompact spaceBounded functionSignal ProcessingInitial value problemAnalysisMathematicsHyperbolic equilibrium pointNumerical Functional Analysis and Optimization
researchProduct