0000000000824386
AUTHOR
W. Von Ammon
Prediction of the growth interface shape in industrial 300mm CZ Si crystal growth
Abstract A model approach for a modification of the effective heat conductivity in the turbulent melt flow simulation for 28″ Si CZ crucibles is presented, which helped to overcome deficiencies in the growth interface shape prediction for industrial 300 mm Si CZ growth. The model has been incorporated into a CZ simulation tool based on the simulation software codes FEMAG for the global heat transfer and CFD-ACE for the turbulent melt flow simulation. The model predictions are compared to results from 300 mm Si CZ growth experiments with 200 kg charge weight in 28″ crucibles in a growth parameter range covered by standard industrial processes. The model is an engineering approach. Neverthele…
Numerical study and comparisons with experimental data for transient behaviour of phase boundaries during industrial FZ process for silicon crystal growth
Abstract In our numerical transient model developed previously for the industrial FZ crystal growth process with the needle-eye technique, the meshing algorithms are essentially improved and a significant amount of numerical studies are carried out for model verification. Transient modelling for the experimental growth process with step-like time dependences of inductor current and feed rod velocity has shown that time dependencies of the crystal radius and zone height calculated numerically agree with the data from praxis. The fully transient simulation for growth process of crystal starting cone has shown that the model is capable of performing the simulation even if the crystal diameter …