0000000000824665

AUTHOR

Giuseppina Barletta

0000-0003-3749-4916

showing 5 related works from this author

Elliptic problems with convection terms in Orlicz spaces

2021

Abstract The existence of a solution to a Dirichlet problem, for a class of nonlinear elliptic equations, with a convection term, is established. The main novelties of the paper stand on general growth conditions on the gradient variable, and on minimal assumptions on Ω. The approach is based on the method of sub and supersolutions. The solution is a zero of an auxiliary pseudomonotone operator build via truncation techniques. We present also some examples in which we highlight the generality of our growth conditions.

Dirichlet problemGradient dependenceClass (set theory)Truncation methodsTruncationApplied Mathematics010102 general mathematicsZero (complex analysis)Orlicz-Sobolev spacesNonlinear elliptic equationsTerm (logic)01 natural sciences010101 applied mathematicsNonlinear systemOperator (computer programming)Subsolution and supersolutionSettore MAT/05 - Analisi MatematicaApplied mathematics0101 mathematicsAnalysisMathematicsVariable (mathematics)Journal of Mathematical Analysis and Applications
researchProduct

A nonlinear eigenvalue problem for the periodic scalar p-Laplacian

2014

We study a parametric nonlinear periodic problem driven by the scalar $p$-Laplacian. We show that if $\hat \lambda_1 >0$ is the first eigenvalue of the periodic scalar $p$-Laplacian and $\lambda> \hat \lambda_1$, then the problem has at least three nontrivial solutions one positive, one negative and the third nodal. Our approach is variational together with suitable truncation, perturbation and comparison techniques.

PhysicsApplied MathematicsScalar (mathematics)AnalysiGeneral MedicineMathematics::Spectral TheoryLambdaSecond deformation theoremParametric equationNonlinear systemp-LaplacianConstant sign and nodal solutionExtremal solutionDivide-and-conquer eigenvalue algorithmParametric equationAnalysisEigenvalues and eigenvectorsParametric statisticsMathematical physics
researchProduct

Resonant neumann equations with indefinite linear part

2015

We consider aseminonlinear Neumann problem driven by the $p$-Laplacian plus an indefinite and unbounded potential. The reaction of the problem is resonant at $\pm \infty$ with respect to the higher parts of the spectrum. Using critical point theory, truncation and perturbation techniques, Morse theory and the reduction method, we prove two multiplicity theorems. One produces three nontrivial smooth solutions and the second four nontrivial smooth solutions.

Unique continuation propertyReduction methodApplied MathematicsMathematical analysisMultiple solutionPerturbation (astronomy)AnalysiMultiplicity (mathematics)Neumann boundary conditionResonant equationAnalysisCritical groupMathematicsMorse theory
researchProduct

Infinitely many solutions for a class of differential inclusions involving the $p$-biharmonic

2013

The existence of inffinitely many solutions for diffierential inclusions depending on two positive parameters and involving the p- biharmonic operator is established via variational methods.

34A60Applied MathematicsAnalysi58E05AnalysisDifferential and Integral Equations
researchProduct

Regular solutions for nonlinear elliptic equations, with convective terms, in Orlicz spaces

2022

We establish some existence and regularity results to the Dirichlet problem, for a class of quasilinear elliptic equations involving a partial differential operator, depending on the gradient of the solution. Our results are formulated in the Orlicz-Sobolev spaces and under general growth conditions on the convection term. The sub- and supersolutions method is a key tool in the proof of the existence results.

sub-supersolutionMathematics - Analysis of PDEsOrlicz-Sobolev spaceSettore MAT/05 - Analisi Matematicagradient dependenceGeneral Mathematicsnonlinear elliptic equationFOS: Mathematics35J25 35J99 46E35Analysis of PDEs (math.AP)
researchProduct