0000000000826345
AUTHOR
Laura Lopez-honorez
Constraints on dark matter annihilation from CMB observations before Planck
We compute the bounds on the dark matter (DM) annihilation cross section using the most recent Cosmic Microwave Background measurements from WMAP9, SPT'11 and ACT'10. We consider DM with mass in the MeV-TeV range annihilating 100% into either an e(+)e(-) or a mu(+)mu(-) pair. We consider a realistic energy deposition model, which includes the dependence on the redshift, DM mass and annihilation channel. We exclude the canonical thermal relic abundance cross section ( = 3 x 10(-26) cm(3)s(-1)) for DM masses below 30 GeV and 15 GeV for the e(+)e(-) and mu(+)mu(-) channels, respectively. A priori, DM annihilating in halos could also modify the reionization history of the Universe at late times…
Warm dark matter and the ionization history of the Universe
In warm dark matter scenarios structure formation is suppressed on small scales with respect to the cold dark matter case, reducing the number of low-mass halos and the fraction of ionized gas at high redshifts and thus, delaying reionization. This has an impact on the ionization history of the Universe and measurements of the optical depth to reionization, of the evolution of the global fraction of ionized gas and of the thermal history of the intergalactic medium, can be used to set constraints on the mass of the dark matter particle. However, the suppression of the fraction of ionized medium in these scenarios can be partly compensated by varying other parameters, as the ionization effic…
Biases on cosmological parameters by general relativity effects
General relativistic corrections to the galaxy power spectrum appearing at the horizon scale, if neglected, may induce biases on the measured values of the cosmological parameters. In this paper, we study the impact of general relativistic effects on non standard cosmologies such as scenarios with a time dependent dark energy equation of state, with a coupling between the dark energy and the dark matter fluids or with non-Gaussianities. We then explore whether general relativistic corrections affect future constraints on cosmological parameters in the case of a constant dark energy equation of state and of non-Gaussianities. We find that relativistic corrections on the power spectrum are no…
New constraints on coupled dark energy from the Planck satellite experiment
We present new constraints on coupled dark energy from the recent measurements of the cosmic microwave background anisotropies from the Planck satellite mission. We found that a coupled dark energy model is fully compatible with the Planck measurements, deriving a weak bound on the dark matter-dark energy coupling parameter xi = -0.49(-0.31)(+0.19) at 68% C.L. Moreover if Planck data are fitted to a coupled dark energy scenario, the constraint on the Hubble constant is relaxed to H-0 = 72.1(-2.3)(+3.2) km/s/Mpc, solving the tension with the Hubble Space Telescope (HST) value. We show that a combined PLANCK + HST analysis provides significant evidence for coupled dark energy finding a nonzer…
Primordial power spectrum features and f(NL) constraints
The simplest models of inflation predict small non-gaussianities and a featureless power spectrum. However, there exist a large number of well-motivated theoretical scenarios in which large non-gaussianties could be generated. In general, in these scenarios the primordial power spectrum will deviate from its standard power law shape. We study, in a model-independent manner, the constraints from future large scale structure surveys on the local non-gaussianity parameter $f_{\rm NL}$ when the standard power law assumption for the primordial power spectrum is relaxed. If the analyses are restricted to the large scale-dependent bias induced in the linear matter power spectrum by non-gaussianite…
Variations in fundamental constants at the cosmic dawn
The observation of space-time variations in fundamental constants would provide strong evidence for the existence of new light degrees of freedom in the theory of Nature. Robustly constraining such scenarios requires exploiting observations that span different scales and probe the state of the Universe at different epochs. In the context of cosmology, both the cosmic microwave background and the Lyman-α forest have proven to be powerful tools capable of constraining variations in electromagnetism, however at the moment there do not exist cosmological probes capable of bridging the gap between recombination and reionization. In the near future, radio telescopes will attempt to measure the 21…
CMB and Lyman-$\alpha$ constraints on dark matter decays to photons
Dark matter energy injection in the early universe modifies both the ionization history and the temperature of the intergalactic medium. In this work, we improve the CMB bounds on sub-keV dark matter and extend previous bounds from Lyman-$\alpha$ observations to the same mass range, resulting in new and competitive constraints on axion-like particles (ALPs) decaying into two photons. The limits depend on the underlying reionization history, here accounted self-consistently by our modified version of the publicly available {\tt DarkHistory} and {\tt CLASS} codes. Future measurements such as the ones from the CMB-S4 experiment may play a crucial, leading role in the search for this type of li…
Current constraints on early and stressed dark energy models and future 21 cm perspectives
Despite the great progress of current cosmological measurements, the nature of the dominant component of the universe, coined dark energy, is still an open question. Early Dark Energy is a possible candidate which may also alleviate some fine tuning issues of the standard paradigm. Using the latest available cosmological data, we find that the 95% CL upper bound on the early dark energy density parameter is $\Omega_{\textrm{eDE}}$. On the other hand, the dark energy component may be a stressed and inhomogeneous fluid. If this is the case, the effective sound speed and the viscosity parameters are unconstrained by current data. Future omniscope-like $21$cm surveys, combined with present CMB …
A fresh look into the interacting dark matter scenario
The elastic scattering between dark matter particles and radiation represents an attractive possibility to solve a number of discrepancies between observations and standard cold dark matter predictions, as the induced collisional damping would imply a suppression of small-scale structures. We consider this scenario and confront it with measurements of the ionization history of the Universe at several redshifts and with recent estimates of the counts of Milky Way satellite galaxies. We derive a conservative upper bound on the dark matter-photon elastic scattering cross section of $\sigma_{\gamma \rm{DM}} < 8 \times 10^{-10} \, \sigma_T \, \left(m_{\rm DM}/{\rm GeV}\right)$ at $95\%$~CL, abou…
Future CMB cosmological constraints in a dark coupled universe
Cosmic microwave background satellite missions as the ongoing Planck experiment are expected to provide the strongest constraints on a wide set of cosmological parameters. Those constraints, however, could be weakened when the assumption of a cosmological constant as the dark energy component is removed. Here we show that it will indeed be the case when there exists a coupling among the dark energy and the dark matter fluids. In particular, the expected errors on key parameters as the cold dark matter density and the angular diameter distance at decoupling are significantly larger when a dark coupling is introduced. We show that it will be the case also for future satellite missions as EPIC…
Constraining dark matter late-time energy injection: decays and p-wave annihilations
We use the latest cosmic microwave background (CMB) observations to provide updated constraints on the dark matter lifetime as well as on p-wave suppressed annihilation cross sections in the 1 MeV to 1 TeV mass range. In contrast to scenarios with an s-wave dominated annihilation cross section, which mainly affect the CMB close to the last scattering surface, signatures associated with these scenarios essentially appear at low redshifts ($z \lesssim 50$) when structure began to form, and thus manifest at lower multipoles in the CMB power spectrum. We use data from Planck, WMAP9, SPT and ACT, as well as Lyman-$\alpha$ measurements of the matter temperature at $z \sim 4$ to set a 95 % confide…
Higher-order coupled quintessence
We study a coupled quintessence model in which the interaction with the dark-matter sector is a function of the quintessence potential. Such a coupling can arise from a field dependent mass term for the dark-matter field. The dynamical analysis of a standard quintessence potential coupled with the interaction explored here shows that the system possesses a late-time accelerated attractor. In light of these results, we perform a fit to the most recent Supernovae Ia, Cosmic Microwave Background, and Baryon Acoustic Oscillation data sets. Constraints arising from weak equivalence principle violation arguments are also discussed.
The 21 cm signal and the interplay between dark matter annihilations and astrophysical processes
Future dedicated radio interferometers, including HERA and SKA, are very promising tools that aim to study the epoch of reionization and beyond via measurements of the 21 cm signal from neutral hydrogen. Dark matter (DM) annihilations into charged particles change the thermal history of the Universe and, as a consequence, affect the 21 cm signal. Accurately predicting the effect of DM strongly relies on the modeling of annihilations inside halos. In this work, we use up-to-date computations of the energy deposition rates by the products from DM annihilations, a proper treatment of the contribution from DM annihilations in halos, as well as values of the annihilation cross section allowed by…