0000000000827229

AUTHOR

Jochen Walz

showing 56 related works from this author

Rydberg excitation of trapped cold ions: a detailed case study

2011

We provide a detailed theoretical and conceptual study of a planned experiment to excite Rydberg states of ions trapped in a Paul trap. The ultimate goal is to exploit the strong state dependent interactions between Rydberg ions to implement quantum information processing protocols and to simulate the dynamics of strongly interacting spin systems. We highlight the promises of this approach when combining the high degree of control and readout of quantum states in trapped ion crystals with the novel and fast gate schemes based on interacting giant Rydberg atomic dipole moments. We discuss anticipated theoretical and experimental challenges on the way towards its realization.

PhysicsQuantum PhysicsAtomic Physics (physics.atom-ph)FOS: Physical sciencesGeneral Physics and Astronomy01 natural sciencesPhysics - Atomic Physics010305 fluids & plasmasIonsymbols.namesakeDipoleQuantum state0103 physical sciencesRydberg formulasymbolsPhysics::Atomic PhysicsIon trapAtomic physicsQuantum Physics (quant-ph)010306 general physicsSpin (physics)Realization (systems)ExcitationNew Journal of Physics
researchProduct

Triple resonant four-wave mixing: A microwatt continuous-wave laser source in the vacuum ultraviolet region at 120 nm

2012

We present a vacuum ultraviolet laser source by four-wave mixing in mercury vapour based on solid-state laser systems. Maximum powers of 6μW were achieved with an increase of four orders of magnitude in efficiency.

Laser ultrasonicsMaterials sciencebusiness.industryOrders of magnitude (temperature)Laser pumpingLaserlaw.inventionFour-wave mixingOpticslawContinuous waveOptoelectronicsbusinessMixing (physics)Tunable laserConference on Lasers and Electro-Optics 2012
researchProduct

Observation of Spin Flips with a Single Trapped Proton

2011

Radio-frequency induced spin transitions of one individual proton are observed for the first time. The spin quantum jumps are detected via the continuous Stern-Gerlach effect, which is used in an experiment with a single proton stored in a cryogenic Penning trap. This is an important milestone towards a direct high-precision measurement of the magnetic moment of the proton and a new test of the matter-antimatter symmetry in the baryon sector.

PhysicsProtonAtomic Physics (physics.atom-ph)Proton magnetic momentNuclear TheoryGeneral Physics and AstronomyFOS: Physical sciencesPenning trapPhysics - Atomic PhysicsNuclear physicsNuclear magnetic momentPhysics::Atomic and Molecular ClustersPhysics::Accelerator PhysicsSpin-flipAtomic physicsProton emissionNucleonNuclear ExperimentSpin-½
researchProduct

A novel cooling scheme for antiprotons

2006

We propose a novel technique which uses laser-cooled negative osmium ions for sympathetic cooling of antiprotons. Temperatures down to the sub-millikelvin range might be achievable. These antiprotons could be used to form antihydrogen at ultra-cold temperatures, thus allowing efficient magnetic trapping of antihydrogen for high-resolution laser spectroscopy. Antihydrogen at sub-millikelvin temperatures might also enable first direct measurements of the gravitational acceleration of antimatter. Currently, no other technique exists which allows the cooling of large numbers of antiprotons to temperatures below that of the surrounding trap.

PhysicsPhysics::General PhysicsSympathetic coolingRange (particle radiation)General Physics and AstronomyTrappingGravitational accelerationIonNuclear physicsAntiprotonAntimatterPhysics::Atomic and Molecular ClustersPhysics::Atomic PhysicsAntihydrogenNew Journal of Physics
researchProduct

LC circuit mediated sympathetic cooling of a proton via image currents

2021

Abstract Efficient cooling of trapped charged particles is essential in many fundamental physics experiments, for high-precision metrology, and for quantum technology. Until now, ion-ion coupling for sympathetic cooling or quantum state control has been limited to ion species with accessible optical transitions or has required close-range Coulomb interactions. To overcome this limitation and further develop scalable quantum control techniques, there has been a sustained desire to extend laser-cooling techniques to particles in macroscopically separated traps, opening quantum control techniques to previously inaccessible particles such as highly charged ions, molecular ions, and antimatter p…

Sympathetic coolingMaterials scienceProtonbusiness.industryOptoelectronicsPhysics::Atomic PhysicsLC circuitbusiness
researchProduct

Direct limits on the interaction of antiprotons with axion-like dark matter

2019

Astrophysical observations indicate that there is roughly five times more dark matter in the Universe than ordinary baryonic matter, with an even larger amount of the Universe's energy content due to dark energy. So far, the microscopic properties of these dark components have remained shrouded in mystery. In addition, even the five percent of ordinary matter in our Universe has yet to be understood, since the Standard Model of particle physics lacks any consistent explanation for the predominance of matter over antimatter. Inspired by these central problems of modern physics, we present here a direct search for interactions of antimatter with dark matter, and place direct constraints on th…

PhysicsParticle physicsAstrophysics and AstronomyCosmology and Nongalactic Astrophysics (astro-ph.CO)MultidisciplinaryAtomic Physics (physics.atom-ph)010308 nuclear & particles physicsDark matterFOS: Physical sciences01 natural sciencesPhysics - Atomic PhysicsStandard ModelBaryonHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Baryon asymmetryOrders of magnitude (time)AntiprotonAntimatter0103 physical sciencesPräzisionsexperimente - Abteilung Blaum010306 general physicsAxionParticle Physics - ExperimentAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

4W continuous-wave narrow-linewidth tunable solid-state laser source at 546nm by externally frequency doubling a ytterbium-doped single-mode fiber la…

2009

A high-power continuous-wave coherent light source at 545.5nm is described. We use 8.3W from a solid-state ytterbium-doped single-mode fiber oscillator/amplifier system as input into an external frequency doubling stage. This system produces up to 4.1 W of stable green single-frequency laser radiation. We characterize the light source by performing absorption spectroscopy on iodine across the full tuning range of the fiber laser and saturation spectroscopy on one strong iodine line of the doppler-broadened spectrum.

Distributed feedback laserTunable diode laser absorption spectroscopyMaterials sciencebusiness.industrySingle-mode optical fiberLaserAtomic and Molecular Physics and Opticslaw.inventionLaser linewidthOpticslawFiber laserUltrafast laser spectroscopyOptoelectronicsLaser power scalingbusinessOptics express
researchProduct

A continuous wave 10 W cryogenic fiber amplifier at 1015 nm and frequency quadrupling to 254 nm

2013

A stable, continuous wave, single frequency fiber amplifier system at 1015 nm with 10W output power is presented. It is based on a large mode double clad fiber cooled to liquid nitrogen temperature. The amplified light is frequency quadrupled to 254 nm and used for spectroscopy of the 6^1S - 6^3P transition in mercury.

Materials sciencebusiness.industrychemistry.chemical_elementFOS: Physical sciencesLiquid nitrogenAtomic and Molecular Physics and OpticsMercury (element)Double-clad fiberchemistryFiber amplifierOptoelectronicsContinuous wavebusinessSpectroscopyPhysics - OpticsOptics (physics.optics)
researchProduct

ATRAP antihydrogen experiments

2007

Antihydrogen (Hbar) was first produced at CERN in 1996. Over the past decade our ATRAP collaboration has made massive progress toward our goal of producing large numbers of cold Hbar atoms that will be captured in a magnetic gradient trap for precise comparison between the atomic spectra of matter and antimatter. The AD at CERN provides bunches of 3 × 107 low energy Pbars every 100 seconds. We capture and cool to 4 K, 0.1% of these in a cryogenic Penning trap. By stacking many bunches we are able to do experiments with 3 × 105 Pbars. ∼100 e+/sec from a 22Na radioactive source are captured and cooled in the trap, with 5 × 106 available experiments.We have developed 2 ways to make Hbar from t…

PhysicsAntiparticleCondensed Matter PhysicsPenning trapNuclear physicssymbols.namesakeAntiprotonLaser coolingAntimatterRydberg formulasymbolsPhysics::Atomic PhysicsAtomic physicsNeutral particleAntihydrogenphysica status solidi c
researchProduct

A test of charge-parity-time invariance at the atto-electronvolt scale

2017

We developed a novel fast measurement procedure for cyclotron frequency comparisons of two individual particles in a Penning trap, which enabled us to compare the charge-to-mass ratio of the proton and the antiproton with a fractional precision of 69 parts per trillion. To date this is the most precise test of charge-parity-time invariance using baryons. Our measurements were performed at cyclotron frequencies of about 30 MHz, which means that charge-parity-time symmetry holds at the atto-electronvolt scale.

Nuclear physicsPhysicsBaryonAntiparticleScale (ratio)Physics in GeneralAntimatterElectronvoltPräzisionsexperimente - Abteilung BlaumParity (mathematics)NucleonNuclear ExperimentAtto-
researchProduct

Sixfold improved single particle measurement of the magnetic moment of the antiproton

2017

Our current understanding of the Universe comes, among others, from particle physics and cosmology. In particle physics an almost perfect symmetry between matter and antimatter exists. On cosmological scales, however, a striking matter/antimatter imbalance is observed. This contradiction inspires comparisons of the fundamental properties of particles and antiparticles with high precision. Here we report on a measurement of the g-factor of the antiproton with a fractional precision of 0.8 parts per million at 95% confidence level. Our value /2=2.7928465(23) outperforms the previous best measurement by a factor of 6. The result is consistent with our proton g-factor measurement gp/2=2.7928473…

AntiparticleParticle physicsLorentz transformationSciencelorentzGeneral Physics and Astronomysystem01 natural sciencesArticleGeneral Biochemistry Genetics and Molecular BiologyCosmologyNuclear physicssymbols.namesakeStandard-Model Extension0103 physical sciencesNuclear Physics - Experimentcpt010306 general physicsNuclear ExperimentPhysicsMultidisciplinary010308 nuclear & particles physicsQpenning trapParity (physics)General ChemistryPenning trapAntiprotonAntimattersymbolstestsddc:500Präzisionsexperimente - Abteilung Blaum
researchProduct

Triple resonant four-wave mixing boosts the yield of continuous coherent vacuum ultraviolet generation.

2012

Efficient continuous-wave four-wave mixing by using three different fundamental wavelengths with individual detunings to resonances of the nonlinear medium is shown. Up to 6 μW of vacuum ultraviolet light at 121 nm can be generated, which corresponds to an increase of three orders of magnitude in efficiency. This opens the field of quantum information processing by Rydberg entanglement of trapped ions.

PhysicsOrders of magnitude (temperature)General Physics and AstronomyNonlinear opticsQuantum entanglementsymbols.namesakeFour-wave mixingWavelengthNonlinear mediumRydberg formulasymbolsPhysics::Atomic PhysicsAtomic physicsMixing (physics)Physical review letters
researchProduct

A semiconductor laser system for the production of antihydrogen

2012

Laser-controlled charge exchange is a promising method for producing cold antihydrogen. Caesium atoms in Rydberg states collide with positrons and create positronium. These positronium atoms then interact with antiprotons, forming antihydrogen. Las er excitation of the caesium atoms is essential to increase the cross section of the charge-exchange collisions. This method was demonstrated in 2004 by the ATRAP collaboration by using an available copper vapour laser. For a second generation of charge-e xchange experiments we have designed a new semiconductor laser system that features several improvements compared to the copper vapour laser. We describe this new laser system and show the resul…

PhysicsGeneral Physics and Astronomychemistry.chemical_elementLaserlaw.inventionSemiconductor laser theoryPositroniumsymbols.namesakechemistrylawAntimatterExcited stateCaesiumPhysics::Atomic and Molecular ClustersRydberg formulasymbolsddc:530Physics::Atomic PhysicsAtomic physicsAntihydrogenNew Journal of Physics
researchProduct

Pumped helium system for cooling positron and electron traps to 1.2 K

2011

Abstract Extremely precise tests of fundamental particle symmetries should be possible via laser spectroscopy of trapped antihydrogen ( H ¯ ) atoms. H ¯ atoms that can be trapped must have an energy in temperature units that is below 0.5 K—the energy depth of the deepest magnetic traps that can currently be constructed with high currents and superconducting technology. The number of atoms in a Boltzmann distribution with energies lower than this trap depth depends sharply upon the temperature of the thermal distribution. For example, ten times more atoms with energies low enough to be trapped are in a thermal distribution at a temperature of 1.2 K than for a temperature of 4.2 K. To date, H…

Condensed Matter::Quantum GasesSuperconductivityPhysicsantihydrogenNuclear and High Energy Physicsliquid heliumLiquid heliumPenning trapchemistry.chemical_elementElectronAtmospheric temperature rangePenning traplaw.inventionchemistrylawAntimatterantiprotonrefrigeratorPhysics::Atomic PhysicsAtomic physicsAntihydrogenInstrumentationHelium
researchProduct

A reservoir trap for antiprotons

2015

We have developed techniques to extract arbitrary fractions of antiprotons from an accumulated reservoir, and to inject them into a Penning-trap system for high-precision measurements. In our trap-system antiproton storage times > 1.08 years are estimated. The device is fail-safe against power-cuts of up to 10 hours. This makes our planned comparisons of the fundamental properties of protons and antiprotons independent from accelerator cycles, and will enable us to perform experiments during long accelerator shutdown periods when background magnetic noise is low. The demonstrated scheme has the potential to be applied in many other precision Penning trap experiments dealing with exotic p…

Speichertechnik - Abteilung BlaumPhysics - Instrumentation and DetectorsMagnetic noiseAtomic Physics (physics.atom-ph)Other Fields of PhysicsFOS: Physical sciences7. Clean energy01 natural sciencesIon trappingphysics.atom-ph010305 fluids & plasmasPhysics - Atomic PhysicsNuclear physicsTrap (computing)0103 physical sciencesPhysics::Atomic PhysicsPhysical and Theoretical ChemistryDetectors and Experimental Techniques010306 general physicsNuclear ExperimentInstrumentationphysics.ins-detSpectroscopyPhysicsInstrumentation and Detectors (physics.ins-det)Condensed Matter PhysicsPenning trapAntiprotonPhysics::Accelerator Physics
researchProduct

Using electric fields to prevent mirror-trapped antiprotons in antihydrogen studies

2013

The signature of trapped antihydrogen ($\overline{\mathrm{H}}$) atoms is the annihilation signal detected when the magnetic trap that confines the atoms is suddenly switched off. This signal would be difficult to distinguish from the annihilation signal of any trapped $\overline{p}$ that is released when the magnetic trap is switched off. This work deduces the large cyclotron energy ($g$137 eV) required for magnetic trapping of $\overline{p}$, considers the possibility that such $\overline{p}$ are produced, and explores the effectiveness of an electric field applied to clear charged particles from the trapping volume before $\overline{\mathrm{H}}$ detection. No mechanisms are found that can…

Condensed Matter::Quantum GasesPhysicsParticle physicsAnnihilationHigh Energy Physics::PhenomenologyCyclotronAtomic and Molecular Physics and OpticsCharged particlelaw.inventionlawAntiprotonElectric fieldMagnetic trapPhysics::Atomic PhysicsAtomic physicsAntihydrogenEnergy (signal processing)Physical Review A
researchProduct

A New Experiment for the Measurement of the g-Factors of 3He+ and 3He2+.

2018

We describe a new experiment that aims at a parts per billion measurement of the nuclear magnetic moment of 3He2+ and a 100 parts per trillion measurement of the Zeeman effect of the ground-state hyperfine splitting of 3He+. To enable ultrafast and efficient experiment cycles the experiment relies on new technologies such as sympathetic laser cooling of single 3He-ions coupled to a cloud of Doppler-cooled 9Be-ions in a Penning trap or a novel spin-state detection scheme.

0301 basic medicinePhysicsHistoryZeeman effectPenning trap01 natural sciencesComputer Science ApplicationsEducation03 medical and health sciencessymbols.namesake030104 developmental biologyLaser coolingTheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITY0103 physical sciencesNuclear magnetic momentsymbolsPhysics::Atomic PhysicsAtomic physicsPräzisionsexperimente - Abteilung Blaum010306 general physicsUltrashort pulseHyperfine structure
researchProduct

Direct Measurement of the Free Cyclotron Frequency of a Single Particle in a Penning Trap

2011

A measurement scheme for the direct determination of the free cyclotron frequency ${\ensuremath{\nu}}_{c}$ of a single particle stored in a Penning trap is described. The method is based on the dressed states of mode coupling. In this novel measurement scheme both radial modes of the single trapped particle are simultaneously coupled to the axial oscillation mode.

Condensed Matter::Quantum GasesPhysicsOscillationCyclotronGeneral Physics and AstronomyPenning trapIon trappingFourier transform ion cyclotron resonancelaw.inventionlawMode couplingParticlePhysics::Atomic PhysicsIon trapAtomic physicsPhysical Review Letters
researchProduct

Resolution of Single Spin Flips of a Single Proton

2013

The spin magnetic moment of a single proton in a cryogenic Penning trap was coupled to the particle's axial motion with a superimposed magnetic bottle. Jumps in the oscillation frequency indicate spin-flips and were identified using a Bayesian analysis.

PhysicsProtonAtomic Physics (physics.atom-ph)010308 nuclear & particles physicsOscillationProton magnetic momentResolution (electron density)Other Fields of PhysicsFOS: Physical sciencesGeneral Physics and AstronomyPenning trap01 natural sciencesIon trappingPhysics - Atomic PhysicsSpin magnetic moment0103 physical sciencesPhysics::Atomic PhysicsAtomic physicsNuclear Experiment010306 general physicsSpin-½Physical Review Letters
researchProduct

750 mW continuous-wave solid-state deep ultraviolet laser source at the 253.7 nm transition in mercury.

2007

A high-power continuous-wave coherent light source at 253.7 nm is described. It is based on a solid-state Yb:YAG disk laser with two successive frequency doubling stages and is capable of generating stable output powers of up to 750 mW. Spectroscopy of the 6 (1)S(0)-6 (3)P(1) transition of mercury has been demonstrated.

Materials sciencebusiness.industrySecond-harmonic generationNonlinear opticsmedicine.disease_causeLaserAtomic and Molecular Physics and OpticsSemiconductor laser theorylaw.inventionOpticslawmedicineContinuous waveOptoelectronicsDisk laserbusinessSpectroscopyUltravioletOptics letters
researchProduct

Improved limit on the directly measured antiproton lifetime

2017

Continuous monitoring of a cloud of antiprotons stored in a Penning trap for 405 days enables us to set an improved limit on the directly measured antiproton lifetime. From our measurements we extract a storage time of $3.15\times {10}^{8}$ equivalent antiproton-seconds, resulting in a lower lifetime limit of ${\tau }_{\bar{{\rm{p}}}}\gt 10.2\,{\rm{a}}$ with a confidence level of $68 \% $. This result improves the limit on charge-parity-time violation in antiproton decays based on direct observation by a factor of 7.

CPT symmetryPenning trapGeneral Physics and Astronomypenning traps01 natural sciencesLower limit010305 fluids & plasmasNuclear physicsContinuous monitoring0103 physical sciencesddc:530Limit (mathematics)Physics::Atomic Physics010306 general physicsNuclear ExperimentPhysicsCPT invariancePhysicsResearchContinuous monitoringDirect observationsDirect observationConfidence levelsPenning trapCharge parityAntiprotonlifetimesPhysics::Accelerator PhysicsCP violationHigh Energy Physics::ExperimentDewey Decimal Classification::500 | Naturwissenschaften::530 | PhysikPräzisionsexperimente - Abteilung BlaumantiprotonsParticle Physics - Experiment
researchProduct

Adiabatic Cooling of Antiprotons

2011

Adiabatic cooling is shown to be a simple and effective method to cool many charged particles in a trap to very low temperatures. Up to 3 x 10(6) (p) over bar are cooled to 3.5 K-10(3) times more cold (p) over bar and a 3 times lower (p) over bar temperature than previously reported. A second cooling method cools (p) over bar plasmas via the synchrotron radiation of embedded (p) over bar (with many fewer (p) over bar than (p) over bar) in preparation for adiabatic cooling. No (p) over bar are lost during either process-a significant advantage for rare particles.

PhysicsHigh Energy Physics::PhenomenologyBremsstrahlungGeneral Physics and AstronomySynchrotron radiationElectronAtmospheric temperature rangeCharged particlelaw.inventionJlawAntiprotonddc:550High Energy Physics::ExperimentPhysics::Atomic PhysicsAtomic physicsAdiabatic processElectron cooling
researchProduct

High-precision comparison of the antiproton-to-proton charge-to-mass ratio

2015

Invariance under the charge, parity, time-reversal (CPT) transformation$^{1}$ is one of the fundamental symmetries of the standard model of particle physics. This CPT invariance implies that the fundamental properties of antiparticles and their matter-conjugates are identical, apart from signs. There is a deep link between CPT invariance and Lorentz symmetry—that is, the laws of nature seem to be invariant under the symmetry transformation of spacetime—although it is model dependent$^{2}$. A number of high-precision CPT and Lorentz invariance tests—using a co-magnetometer, a torsion pendulum and a maser, among others—have been performed$^{3}$, but only a few direct high-precision CPT tests …

PhysicsAntiparticleParticle physicsMultidisciplinaryCPT symmetryLorentz transformationLorentz covarianceBaryonsymbols.namesakeStandard-Model ExtensionAntiprotonQuantum mechanicsAntimattersymbolsPräzisionsexperimente - Abteilung BlaumParticle Physics - Experiment
researchProduct

Enhancement of the Mutagenicity of Ethylene Oxide and Several Directly Acting Mutagens by Human Erythrocytes and its Reduction by Xenobiotic Interact…

1999

According to the present state of knowledge mutagenicity or genotoxicity of the ulti mate genotoxic agents ethylene oxide or styrene oxide cannot be increased by further me tabolism. However, in the present study we demonstrate that mutagenicity of several ultimate genotoxic substances is increased by human erythrocytes. For instance mu tagenicity of mafosfamide, N-nitroso-N-methylurea, ethylene oxide, and styrene oxide to Salmonella typhimurium TA 1535 was increased 5.5-, 5.1-, 2.7-, and 2.3-fold, respectively, by addition of human erythrocyte homogenate to the preincubation mixture in the Ames test. On the other hand, the mutagenicity of cumene hydroperoxide, benzo[a]pyrene-4,5-oxide, and…

Ethylene oxidemedicine.disease_causeAmes testchemistry.chemical_compoundchemistryBiochemistryMafosfamideCumene hydroperoxideStyrene oxidemedicineHuman erythrocytesOrganic chemistryXenobioticGenotoxicity
researchProduct

Rydberg Excitation of a Single Trapped Ion.

2015

We demonstrate excitation of a single trapped cold $^{40}$Ca$^+$ ion to Rydberg levels by laser radiation in the vacuum-ultraviolet at 122 nm wavelength. Observed resonances are identified as 3d$^2$D$_{3/2}$ to 51 F, 52 F and 3d$^2$D$_{5/2}$ to 64F. We model the lineshape and our results imply a large state-dependent coupling to the trapping potential. Rydberg ions are of great interest for future applications in quantum computing and simulation, in which large dipolar interactions are combined with the superb experimental control offered by Paul traps.

Condensed Matter::Quantum GasesPhysicsQuantum PhysicsAtomic Physics (physics.atom-ph)FOS: Physical sciencesGeneral Physics and AstronomyTrappingCoupling (probability)01 natural sciencesIon trappingPhysics - Atomic Physics010305 fluids & plasmasIonsymbols.namesakeDipole0103 physical sciencessymbolsRydberg formulaRydberg matterPhysics::Atomic PhysicsAtomic physicsQuantum Physics (quant-ph)010306 general physicsExcitationPhysical review letters
researchProduct

Double-trap measurement of the proton magnetic moment at 0.3 parts per billion precision

2017

Precise knowledge of the fundamental properties of the proton is essential for our understanding of atomic structure as well as for precise tests of fundamental symmetries. We report on a direct high-precision measurement of the magnetic moment μp of the proton in units of the nuclear magneton μN. The result, μp = 2.79284734462 (±0.00000000082) μN, has a fractional precision of 0.3 parts per billion, improves the previous best measurement by a factor of 11, and is consistent with the currently accepted value. This was achieved with the use of an optimized double–Penning trap technique. Provided a similar measurement of the antiproton magnetic moment can be performed, this result will enable…

PhysicsMultidisciplinaryMagnetic momentProton010308 nuclear & particles physicsProton magnetic moment7. Clean energy01 natural sciencesSymmetry (physics)Nuclear physicsBaryonAntiprotonAntimatter0103 physical sciencesPräzisionsexperimente - Abteilung BlaumAtomic physics010306 general physicsNuclear magnetonScience
researchProduct

Towards an Improved Measurement of the Proton Magnetic Moment

2017

The BASE collaboration performed the most precise measurement of the proton magnetic moment. By applying the so-called double Penning-trap method with a single proton a fractional precision of 3.3 parts-per-billion was reached. This article describes the primary limitations of the last measurement and discusses improvements to reach the sub-parts-per-billion level.

PhysicsLarmor precessionMagnetic momentProton magnetic momentCyclotronMagnetic fieldlaw.inventionPhysics in GenerallawAntimatterPrecessionPräzisionsexperimente - Abteilung BlaumAtomic physicsNucleonProceedings of the 12th International Conference on Low Energy Antiproton Physics (LEAP2016)
researchProduct

Single-component plasma of photoelectrons

2007

Abstract Ten-nanosecond pulses of photoelectrons liberated by intense UV laser pulses from a thin gold layer are captured into a single-component plasma that is ideally suited to cool antiprotons ( p ¯ ) for antihydrogen ( H ¯ ) production. Up to a billion electrons are accumulated using a series of laser pulses, more than are needed for efficient p ¯ cooling in the large traps now being used for loading p ¯ for H ¯ production. The method is demonstrated within an enclosed vacuum space that is entirely at 4 K, and is thus compatible with the exceptional cryogenic vacuum that is desirable for the long-term storage of antihydrogen. The pitfalls of other electron accumulation methods are entir…

PhysicsNuclear and High Energy PhysicsThermionic emissionPlasmaElectronPhotoelectric effectLaserlaw.inventionField electron emissionlawAntimatterPhysics::Atomic PhysicsAtomic physicsAntihydrogenPhysics Letters B
researchProduct

Measurement of ultra-low heating rates of a single antiproton in a cryogenic Penning trap

2019

Physical review letters 122(4), 043201 (2019). doi:10.1103/PhysRevLett.122.043201

Electric fieldsField noiseCryogenicsAtomic Physics (physics.atom-ph)Penning trapOther Fields of PhysicsGeneral Physics and AstronomyFOS: Physical sciences01 natural sciences530physics.atom-phPhysics - Atomic PhysicsSpectral densityNoise spectral densityTheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITY0103 physical sciencesddc:530010306 general physicsPhysicsComputer Science::Information RetrievalSpectral densityComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)Penning trapOrders of magnitudeAntiprotonQuantum transition rateDewey Decimal Classification::500 | Naturwissenschaften::530 | PhysikAtomic physicsPräzisionsexperimente - Abteilung BlaumIon traps
researchProduct

Continuous-wave spontaneous lasing in mercury pumped by resonant two-photon absorption

2010

The first continuous-wave two-photon absorption laser-induced stimulated emission (CTALISE) is demonstrated. The 7^1S-6^1P transition in mercury at 1014nm wavelength is used and selective lasing of different isotopes is observed.

Materials sciencechemistry.chemical_elementPhysics::OpticsFOS: Physical sciencesTwo-photon absorptionAtomic and Molecular Physics and OpticsMercury (element)WavelengthchemistryContinuous waveStimulated emissionAtomic physicsLasing thresholdPhysics - OpticsOptics (physics.optics)
researchProduct

Sympathetic cooling of protons and antiprotons with a common endcap Penning trap.

2017

We present an experiment to sympathetically cool protons and antiprotons in a Penning trap by resonantly coupling the particles to laser cooled beryllium ions using a common endcap technique. Our analysis shows that preparation of (anti)protons at mK temperatures on timescales of tens of seconds is feasible. Successful implementation of the technique will have immediate and significant impact on high-precision comparisons of the fundamental properties of protons and antiprotons. This in turn will provide some of the most stringent tests of the fundamental symmetries of the Standard Model.

Sympathetic coolingSpeichertechnik - Abteilung BlaumProtonAtomic Physics (physics.atom-ph)Other Fields of PhysicsFOS: Physical scienceschemistry.chemical_element7. Clean energy01 natural sciencesphysics.atom-ph010305 fluids & plasmaslaw.inventionIonPhysics - Atomic PhysicsNuclear physicslawLaser cooling0103 physical sciencesddc:530Physics::Atomic Physics010306 general physicsNuclear ExperimentPhysicsLaserPenning trapAtomic and Molecular Physics and OpticschemistryAntiprotonPhysics::Accelerator PhysicsBeryllium
researchProduct

Antihydrogen production within a Penning-Ioffe trap.

2008

Slow antihydrogen (H) is produced within a Penning trap that is located within a quadrupole Ioffe trap, the latter intended to ultimately confine extremely cold, ground-state H[over ] atoms. Observed H[over ] atoms in this configuration resolve a debate about whether positrons and antiprotons can be brought together to form atoms within the divergent magnetic fields of a quadrupole Ioffe trap. The number of detected H atoms actually increases when a 400 mK Ioffe trap is turned on.

Condensed Matter::Quantum GasesPhysicsAntiparticleGeneral Physics and AstronomyPenning trapTrap (computing)Nuclear physicsAntiprotonAntimatterQuadrupolePhysics::Atomic and Molecular ClustersPhysics::Atomic PhysicsIon trapAtomic physicsAntihydrogenPhysical review letters
researchProduct

A Novel Penning‐Trap Design for the High‐Precision Measurement of the 3 He 2 + Nuclear Magnetic Moment

2019

PhysicsHelium-3Nuclear magnetic momentGeneral Physics and AstronomyAtomic physicsPenning trapNMR - Nuclear magnetic resonanceAnnalen der Physik
researchProduct

Observation of individual spin quantum transitions of a single antiproton

2017

We report on the detection of individual spin quantum transitions of a single trapped antiproton in a Penning trap. The spin-state determination, which is based on the unambiguous detection of axial frequency shifts in presence of a strong magnetic bottle, reaches a fidelity of 92.1% . Spin-state initialization with >99.9% fidelity and an average initialization time of 24 min are demonstrated. This is a major step towards an antiproton magnetic moment measurement with a relative uncertainty on the part-per-billion level. We report on the detection of individual spin quantum transitions of a single trapped antiproton in a Penning trap. The spin-state determination, which is based on the unam…

Nuclear and High Energy PhysicsAtomic Physics (physics.atom-ph)Spin transitionOther Fields of PhysicsInitializationFOS: Physical sciences01 natural sciencesphysics.atom-phPhysics - Atomic Physics010309 optics0103 physical sciencesddc:530Physics::Atomic Physics010306 general physicsQuantumSpin-½PhysicsMeasurement methodMagnetic momentPenning traplcsh:QC1-999AntiprotonDewey Decimal Classification::500 | Naturwissenschaften::530 | PhysikAtomic physicsPräzisionsexperimente - Abteilung Blaumlcsh:Physics
researchProduct

Highly sensitive superconducting circuits at ∼700 kHz with tunable quality factors for image-current detection of single trapped antiprotons

2016

We developed highly-sensitive image-current detection systems based on superconducting toroidal coils and ultra-low noise amplifiers for non-destructive measurements of the axial frequencies (550$\sim$800$\,$kHz) of single antiprotons stored in a cryogenic multi-Penning-trap system. The unloaded superconducting tuned circuits show quality factors of up to 500$\,$000, which corresponds to a factor of 10 improvement compared to our previously used solenoidal designs. Connected to ultra-low noise amplifiers and the trap system, signal-to-noise-ratios of 30$\,$dB at quality factors of > 20$\,$000 are achieved. In addition, we have developed a superconducting switch which allows continuous tu…

SuperconductivityPhysicsSpeichertechnik - Abteilung BlaumPhysics - Instrumentation and DetectorsSolenoidal vector fieldbusiness.industryAmplifierDetectorFOS: Physical sciencesInstrumentation and Detectors (physics.ins-det)01 natural sciencesNoise (electronics)010305 fluids & plasmasQuality (physics)Antiproton0103 physical sciencesOptoelectronicsDetectors and Experimental Techniques010306 general physicsbusinessphysics.ins-detInstrumentationElectronic circuit
researchProduct

Constraints on the Coupling between Axionlike Dark Matter and Photons Using an Antiproton Superconducting Tuned Detection Circuit in a Cryogenic Penn…

2021

We constrain the coupling between axionlike particles (ALPs) and photons, measured with the superconducting resonant detection circuit of a cryogenic Penning trap. By searching the noise spectrum of our fixed-frequency resonant circuit for peaks caused by dark matter ALPs converting into photons in the strong magnetic field of the Penning-trap magnet, we are able to constrain the coupling of ALPs with masses around $2.7906-2.7914\,\textrm{neV/c}^2$ to $g_{a\gamma}< 1 \times 10^{-11}\,\textrm{GeV}^{-1}$. This is more than one order of magnitude lower than the best laboratory haloscope and approximately 5 times lower than the CERN axion solar telescope (CAST), setting limits in a mass and cou…

Astrophysics and AstronomyCosmology and Nongalactic Astrophysics (astro-ph.CO)PhotonAtomic Physics (physics.atom-ph)Dark matterOther Fields of PhysicsFOS: Physical sciencesGeneral Physics and Astronomyphysics.atom-ph01 natural sciences7. Clean energyPhysics - Atomic PhysicsNuclear physicsHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesddc:530Physics::Atomic Physics010306 general physicsParticle Physics - PhenomenologySuperconductivityPhysicshep-phPenning trapCoupling (probability)Magnetic fieldHigh Energy Physics - PhenomenologyAntiprotonastro-ph.COPräzisionsexperimente - Abteilung BlaumCERN Axion Solar TelescopeAstrophysics - Cosmology and Nongalactic AstrophysicsPhysical Review Letters
researchProduct

Studies on Antihydrogen Atoms with the ATRAP Experiment at CERN

2013

The CPT theorem predicts the same properties of matter and antimatter, however, in the nearby Universe, we observe a huge imbalance of matter and antimatter. Therefore, it is intriguing to measure the properties of particles and antiparticles in order to contribute to an explanation of this phenomena. In this article, we will describe the experimental efforts of the ATRAP Collaboration in order to test the CPT theorem using antihydrogen atoms.

Nuclear physicsPhysics::Popular PhysicsPhysics::General PhysicsEngineeringLarge Hadron Colliderbusiness.industryPhysics::Atomic and Molecular ClustersGeneral Physics and AstronomyHigh Energy Physics::ExperimentAntihydrogenbusinessActa Physica Polonica B Proceedings Supplement
researchProduct

Continuous-wave, double-pass second-harmonic generation with 60% efficiency in a single MgO:PPSLT crystal

2014

We present a double-pass scheme for high-efficiency, high-power, second-harmonic generation (SHG) in a single MgO-doped periodically poled stoichiometric lithium tantalate (MgO:PPSLT) crystal. The device is pumped by a single-frequency, continuous-wave fiber amplifier laser system at a wavelength of 1091 nm. For the double-pass scheme, a conversion efficiency of 60% and a harmonic power of 12.8 W at a wavelength of 545.5 nm with a high beam quality of (M2<1.2) is achieved. Compared to single-pass SHG, a double-pass enhancement factor of more than two is observed at the highest fundamental pump power.

Materials sciencebusiness.industryEnergy conversion efficiencyPotassium titanyl phosphateSecond-harmonic generationAtomic and Molecular Physics and Opticschemistry.chemical_compoundOpticschemistryFiber laserLithium tantalateHarmonicOptoelectronicsContinuous waveLaser beam qualitybusinessOptics Letters
researchProduct

Determination of quantum defect for the Rydberg P series of Ca II

2019

We present an experimental investigation of the Rydberg 23 P$_{1/2}$ state of laser-cooled $^{40}$Ca$^+$ ions in a radiofrequency ion trap. Using micromotion sideband spectroscopy on a narrow quadrupole transition, the oscillating electric field at the ion position was precisely characterised, and the modulation of the Rydberg transition due to this field was minimised. From a correlated fit to this P line and previously measured P and F level energies of Ca II, we have determined the ionization energy of 95 751.916(32) $\rm {cm}^{-1}$, in agreement with the accepted value, and the quantum defect for the $n$ P$_{1/2}$ states.

PhysicsQuantum PhysicsField (physics)Atomic Physics (physics.atom-ph)FOS: Physical sciencesCondensed Matter Physics01 natural sciencesAtomic and Molecular Physics and OpticsPhysics - Atomic PhysicsIon010309 opticssymbols.namesakeQuantum defect0103 physical sciencesQuadrupoleRydberg formulasymbolsIon trapPhysics::Atomic PhysicsAtomic physicsIonization energy010306 general physicsSpectroscopyQuantum Physics (quant-ph)
researchProduct

Direct high-precision measurement of the magnetic moment of the proton

2014

The spin-magnetic moment of the proton $\mu_p$ is a fundamental property of this particle. So far $\mu_p$ has only been measured indirectly, analysing the spectrum of an atomic hydrogen maser in a magnetic field. Here, we report the direct high-precision measurement of the magnetic moment of a single proton using the double Penning-trap technique. We drive proton-spin quantum jumps by a magnetic radio-frequency field in a Penning trap with a homogeneous magnetic field. The induced spin-transitions are detected in a second trap with a strong superimposed magnetic inhomogeneity. This enables the measurement of the spin-flip probability as a function of the drive frequency. In each measurement…

PhysicsQuantum PhysicsMultidisciplinaryAnomalous magnetic dipole momentNeutron magnetic momentMagnetic energyAtomic Physics (physics.atom-ph)Proton magnetic momentFOS: Physical sciencesphysics.atom-phElectron magnetic dipole momentSpin magnetic momentPhysics - Atomic PhysicsNuclear magnetic momentAtomic physicsPräzisionsexperimente - Abteilung BlaumQuantum Physics (quant-ph)Magnetic dipole
researchProduct

Superconducting Solenoid System with Adjustable Shielding Factor for Precision Measurements of the Properties of the Antiproton

2019

Physical review applied 12(4), 044012 (2019). doi:10.1103/PhysRevApplied.12.044012

MAGNETIC-MOMENTSpeichertechnik - Abteilung BlaumPenning trapNuclear engineeringGeneral Physics and Astronomy02 engineering and technologyPROTON53001 natural sciencesNoise (electronics)Physics AppliedTrap (computing)External magnetic field0103 physical sciencesPENNING TRAP TECHNIQUEFACILITYddc:530Physics::Atomic PhysicsSolenoidsDetectors and Experimental TechniquesNuclear Experiment010306 general physicsSuperconductivityPhysicsScience & TechnologyLarge Hadron ColliderPhysics021001 nanoscience & nanotechnologyMagnetic fieldElectromagnetic coilAntiprotonPhysical SciencesMagnetic momentsElectromagnetic shieldingPhysics::Accelerator PhysicsCharge-to-mass ratiosDewey Decimal Classification::500 | Naturwissenschaften::530 | PhysikATOMIC MASSPARTICLE0210 nano-technologyMASS MEASUREMENTSPhysical Review Applied
researchProduct

Efficient transfer of positrons from a buffer-gas-cooled accumulator into an orthogonally oriented superconducting solenoid for antihydrogen studies

2012

Positrons accumulated in a room-temperature buffer-gas-cooled positron accumulator are efficiently transferred into a superconducting solenoid which houses the ATRAP cryogenic Penning trap used in antihydrogen research. The positrons are guided along a 9 m long magnetic guide that connects the central field lines of the 0.15 T field in the positron accumulator to the central magnetic field lines of the superconducting solenoid. Seventy independently controllable electromagnets are required to overcome the fringing field of the large-bore superconducting solenoid. The guide includes both a 15° upward bend and a 105° downward bend to account for the orthogonal orientation of the positron accu…

Antiparticlesuperconductivity [solenoid]Physics::Instrumentation and DetectorsPenning trapGeneral Physics and Astronomybeam transportSuperconducting magnetlaw.inventionenergy spectrum [positron]Nuclear physicslawddc:530AntihydrogenPhysicsElectromagnetspatial distribution [magnetic field]ATRAPPenning trapMagnetic fieldbeam opticscryogenicsAntimatterMagnetPhysics::Accelerator Physicsaccumulator [positron]Atomic physicsperformanceNew Journal of Physics
researchProduct

Sympathetic cooling of a trapped proton mediated by an LC circuit

2021

Efficient cooling of trapped charged particles is essential to many fundamental physics experiments1,2, to high-precision metrology3,4 and to quantum technology5,6. Until now, sympathetic cooling has required close-range Coulomb interactions7,8, but there has been a sustained desire to bring laser-cooling techniques to particles in macroscopically separated traps5,9,10, extending quantum control techniques to previously inaccessible particles such as highly charged ions, molecular ions and antimatter. Here we demonstrate sympathetic cooling of a single proton using laser-cooled Be+ ions in spatially separated Penning traps. The traps are connected by a superconducting LC circuit that enable…

Sympathetic coolingProtonAtomic Physics (physics.atom-ph)FOS: Physical sciencesLC circuit7. Clean energy01 natural sciencesArticle010305 fluids & plasmasIonPhysics - Atomic PhysicsPhysics in General0103 physical sciencesAtomic and molecular physicsPhysics::Atomic Physics010306 general physicsPhysicsQuantum PhysicsMultidisciplinaryCharged particleQuantum technologyAntiprotonAntimatterExotic atoms and moleculesddc:500Atomic physicsPräzisionsexperimente - Abteilung BlaumQuantum Physics (quant-ph)
researchProduct

Antiproton confinement in a Penning-Ioffe trap for antihydrogen.

2007

Antiprotons ((p) over bar) remain confined in a Penning trap, in sufficient numbers to form antihydrogen ((H) over bar) atoms via charge exchange, when the radial field of a quadrupole Ioffe trap is added. This first demonstration with (p) over bar suggests that quadrupole Ioffe traps can be superimposed upon (p) over bar and e(+) traps to attempt the capture of (H) over bar atoms as they form, contrary to conclusions of previous analyses.

Condensed Matter::Quantum GasesPhysicsAntiparticleHigh Energy Physics::PhenomenologyGeneral Physics and AstronomyPenning trapJNuclear physicsAntiprotonAntimatterQuadrupoleddc:550Physics::Atomic and Molecular ClustersHigh Energy Physics::ExperimentPhysics::Atomic PhysicsIon trapAtomic physicsQuadrupole ion trapAntihydrogenPhysical review letters
researchProduct

Two-photon spectroscopy of mercury and velocity-selective double resonances

2009

Two-photon laser spectroscopy of the $6\text{ }{^{1}S}_{0}\ensuremath{-}7\text{ }{^{1}S}_{0}$ transition in mercury has been performed using two copropagating continuous-wave laser beams. One laser beam is at 254 nm wavelength and can be tuned to the $6\text{ }{^{1}S}_{0}\ensuremath{-}6\text{ }{^{3}P}_{1}$ resonance. The other laser beam is at 408 nm. Two very different regimes can be distinguished, one far off resonance and one near resonance with the one-photon resonance. A resonance which is not Doppler broadened has been observed for low Rabi frequencies. This velocity-selective double resonance in a three-level ladder system is analogous to the dark resonance in three-level $\ensuremat…

PhysicsWavelengthNuclear magnetic resonanceTwo-photon excitation microscopyOff resonanceResonanceAtomic physicsSpectroscopyLambdaAtomic and Molecular Physics and OpticsLaser beamsPhysical Review A
researchProduct

The quality factor of a superconducting rf resonator in a magnetic field.

2010

The quality factor of a superconducting NbTi resonator at 1.6 MHz in a magnetic field up to 1.2 T as well as its temperature dependence is investigated. A hysteresis effect in the superconducting surface resistance as a function of the magnetic field is observed. An unloaded Q-value of the resonator of 40,500 is achieved at 3.9 K. It is shown that this Q-value is limited by dielectric losses in the FORMVAR insulation of the coils wire. The details of the Q-value optimization are discussed. In the temperature dependence of the Q-value a steep decrease is observed above T approximately = 7.5 K. Finally, the implications of these measurements for real trap experiments are discussed in detail.

SuperconductivityResonatorNuclear magnetic resonanceMaterials scienceFormvarCondensed matter physicsQ factorDielectric lossSuperconducting magnetic energy storageMagnetic hysteresisInstrumentationMagnetic fieldThe Review of scientific instruments
researchProduct

Centrifugal Separation of Antiprotons and Electrons

2010

Centrifugal separation of antiprotons and electrons is observed, the first such demonstration with particles that cannot be laser cooled or optically imaged. The spatial separation takes place during the electron cooling of trapped antiprotons, the only method available to produce cryogenic antiprotons for precision tests of fundamental symmetries and for cold antihydrogen studies. The centrifugal separation suggests a new approach for isolating low energy antiprotons and for producing a controlled mixture of antiprotons and electrons.

PhysicsAntiparticleGeneral Physics and AstronomyPlasmaElectronJlaw.inventionNuclear physicsAntiprotonlawAntimatterddc:550Physics::Accelerator PhysicsHigh Energy Physics::ExperimentPhysics::Atomic PhysicsAtomic physicsNuclear ExperimentAntihydrogenLeptonElectron coolingPhysical Review Letters
researchProduct

Continuous-wave Lyman-alpha generation with solid-state lasers.

2009

A coherent continuous-wave Lyman-alpha source based on four-wave sum-frequency mixing in mercury vapor has been realized with solid-state lasers. The third-order nonlinear susceptibility is enhanced by the 6(1)S - 7(1)S two-photon resonance and the near 6(1)S-6(3)P one-photon resonance. The phase matching curve for this four-wave mixing scheme is observed for the first time. In addition we investigate the two-photon enhancement of the Lyman-alpha yield and observe that the maxima of Lyman-alpha generation are shifted compared to the two-photon resonances of the different isotopes.

PhysicsDye laserbusiness.industryResonanceLaserAtomic and Molecular Physics and Opticslaw.inventionNonlinear systemOpticslawFiber laserContinuous wavebusinessMaximaPhase matchingOptics express
researchProduct

Continuous Lyman-alpha generation by four-wave mixing in mercury for laser cooling of antihydrogenThis paper was presented at the International Confe…

2011

Cooling antihydrogen atoms is important for future experiments both to test the fundamental CPT symmetry by high resolution laser spectroscopy and also to measure the gravitational acceleration of antimatter. Laser cooling of antihydrogen can be done on the strong 1S–2P transition at the wavelength of Lyman-alpha (121.6 nm). A continuous wave laser at the Lyman-alpha wavelength based on solid-state fundamental lasers is described. By using a two-photon and a near one-photon resonance a scan across the whole phase matching curve of the four-wave mixing process is possible. Furthermore the influence of the beam profile of one fundamental beam on the four-wave mixing process is studied.

PhysicsPhysics::General PhysicsPhysics::OpticsGeneral Physics and AstronomyLaserlaw.inventionWavelengthFour-wave mixinglawAntimatterLaser coolingContinuous wavePhysics::Atomic PhysicsAtomic physicsAntihydrogenMixing (physics)Canadian Journal of Physics
researchProduct

Density and geometry of single component plasmas

2007

Abstract The density and geometry of p ¯ and e + plasmas in realistic trapping potentials are required to understand and optimize antihydrogen ( H ¯ ) formation. An aperture method and a quadrupole oscillation frequency method for characterizing such plasmas are compared for the first time, using electrons in a cylindrical Penning trap. Both methods are used in a way that makes it unnecessary to assume that the plasmas are spheroidal, and it is shown that they are not. Good agreement between the two methods illustrates the possibility to accurately determine plasma densities and geometries within non-idealized, realistic trapping potentials.

PhysicsNuclear and High Energy PhysicsOscillationGeometryPlasmaTrappingElectronPenning trapPhysics::Plasma PhysicsUpper hybrid oscillationQuadrupolePhysics::Atomic PhysicsAtomic physicsDetectors and Experimental TechniquesAntihydrogen
researchProduct

Towards a direct measurement of the g-factor of a single isolated protonThis paper was presented at the International Conference on Precision Physics…

2011

Our Penning trap experiment aims at a direct high-precision measurement of the proton g-factor. We present the experimental setup and the measurement technique using the continuous Stern-Gerlach effect. Recent test measurements with a single proton stored in a Penning trap with a strong magnetic bottle and a new toroidal detection system are discussed. For a stringent test of the CPT symmetry the described technique can also be applied to the antiproton.

PhysicsNuclear physicsToroidProtonAntiprotonCPT symmetryPhysics::Atomic and Molecular ClustersMeasure (physics)General Physics and AstronomyPhysics::Atomic PhysicsAtomic physicsNuclear ExperimentPenning trapCanadian Journal of Physics
researchProduct

Demonstration of the double Penning Trap technique with a single proton

2013

Spin flips of a single proton were driven in a Penning trap with a homogeneous magnetic field. For the spin-state analysis the proton was transported into a second Penning trap with a superimposed magnetic bottle, and the continuous Stern-Gerlach effect was applied. This first demonstration of the double Penning trap technique with a single proton suggests that the antiproton magnetic moment measurement can potentially be improved by three orders of magnitude or more. Spin flips of a single proton were driven in a Penning trap with a homogeneous magnetic field. For the spin-state analysis the proton was transported into a second Penning trap with a superimposed magnetic bottle, and the cont…

Nuclear and High Energy PhysicsProtonOrders of magnitude (temperature)Atomic Physics (physics.atom-ph)Other Fields of PhysicsFOS: Physical sciencesGeonium atomPenning traps01 natural sciencesphysics.atom-phPhysics - Atomic Physics010305 fluids & plasmasFundamental symmetries0103 physical sciencesPhysics::Atomic and Molecular ClustersPhysics::Atomic Physics010306 general physicsSpin (physics)Nuclear ExperimentPhysicsPenning trapCPT testsMagnetic fieldAntiprotonPhysics::Accelerator PhysicsIon trapAtomic physicsPhysics Letters B
researchProduct

Large numbers of cold positronium atoms created in laser-selected Rydberg states using resonant charge exchange

2016

Lasers are used to control the production of highly excited positronium atoms (Ps*). The laser light excites Cs atoms to Rydberg states that have a large cross section for resonant charge-exchange collisions with cold trapped positrons. For each trial with 30 million trapped positrons, more than 700 000 of the created Ps* have trajectories near the axis of the apparatus, and are detected using Stark ionization. This number of Ps* is 500 times higher than realized in an earlier proof-of-principle demonstration (2004 Phys. Lett. B 597 257). A second charge exchange of these near-axis Ps* with trapped antiprotons could be used to produce cold antihydrogen, and this antihydrogen production is e…

ANTIHYDROGENGeneral PhysicsAntiparticlepositronium0205 Optical Physics0307 Theoretical And Computational ChemistryPLASMASCONFINEMENTPhysics Atomic Molecular & Chemical01 natural sciences010305 fluids & plasmasPositroniumsymbols.namesake0202 Atomic Molecular Nuclear Particle And Plasma PhysicsIonization0103 physical sciencesPhysics::Atomic and Molecular ClustersPhysics::Atomic Physics010306 general physicsAntihydrogenpositronsPhysicsCondensed Matter::Quantum GasesScience & TechnologyPhysicsOpticsRydberg statesCondensed Matter PhysicsAtomic and Molecular Physics and Opticscharge-exchangeExcited stateAntimatterPhysical SciencesRydberg formulasymbolsAtomic physicsLepton
researchProduct

A parts-per-billion measurement of the antiproton magnetic moment

2017

The magnetic moment of the antiproton is measured at the parts-per-billion level, improving on previous measurements by a factor of about 350. Comparing the fundamental properties of normal-matter particles with their antimatter counterparts tests charge–parity–time (CPT) invariance, which is an important part of the standard model of particle physics. Many properties have been measured to the parts-per-billion level of uncertainty, but the magnetic moment of the antiproton has not. Christian Smorra and colleagues have now done so, and report that it is −2.7928473441 ± 0.0000000042 in units of the nuclear magneton. This is consistent with the magnetic moment of the proton, 2.792847350 ± 0.0…

ProtonCPT symmetry01 natural sciencesddc:070Standard ModelNuclear physicsPhysics in Generalcharge–parity–time (CPT) invariance0103 physical sciencesddc:530atomic and molecular physicsddc:510010306 general physicsNuclear magnetonPhysicsMultidisciplinaryMagnetic moment010308 nuclear & particles physicsDewey Decimal Classification::500 | Naturwissenschaften::510 | MathematikSymmetry (physics)AntiprotonAntimatterHigh Energy Physics::ExperimentDewey Decimal Classification::500 | Naturwissenschaften::530 | PhysikPräzisionsexperimente - Abteilung BlaumAntiproton Decelerator facility
researchProduct

Quantensprünge des Proton-Spins

2011

Die genaue Messung des Kernmagnetons von Protonen und Antiprotonen stellt einen hochempfindlichen Test der Materie-Antimaterie-Symmetrie dar. Einer Kollaboration aus Max-Planck-Institut fur Kernphysik in Heidelberg, Universitat Mainz und GSI Darmstadt ist zum ersten Mal der Nachweis von Spin-Quantensprungen mit einem einzelnen gespeicherten Proton gelungen. Dies ermoglicht eine direkte Prazisionsmessung des magnetischen Moments des Protons und zukunftig auch des Antiprotons.

Physik in unserer Zeit
researchProduct

The production and study of cold antihydrogen (AD2 / ATRAP Status Report)

2007

Detectors and Experimental Techniques
researchProduct